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Abstract

The algebraic part of the critical value of an L-function associated to an elliptic curve is the
algebraic number obtained by dividing the critical value by an appropriate period of the elliptic
curve. In general, a critical value of an L-function is conjectured to be transcendental. However,
by taking out its algebraic part, it is possible to examine the critical value of the L-function
algebraically and obtain more precise information. The Birch and Swinnerton–Dyer (BSD)
conjecture asserts that the algebraic part of the critical value of the Hasse–Weil L-function is
described by arithmetic invariants of an elliptic curve such as the Tate–Shafarevich group and
Tamagawa factors. Therefore, studying the algebraic part of the critical value is deeply related to
calculating these invariants. In this thesis, we discuss two topics related to the p-adic valuations
of the algebraic parts of the critical values in part I and part II respectively.

In part I, we study the behavior of the 2-adic valuations of the critical values for elliptic
curves with complex multiplication. In 1997, Zhao [Zha97] has given a lower bound of the 2-
adic valuations of the central values of the Hecke L-functions associated to a certain family of
elliptic curves with complex multiplication by the ring of Gaussian integers indexed by a square-
free Gaussian integer D. His method is based on the number of the primes dividing D, and is
sometimes referred to as Zhao’s method. To date, Zhao’s method has been applied to various
families of elliptic curves and has even been devised as an application that shows non-vanishing
of critical values of L-functions associated to elliptic curves, making it one of the most promising
methods for future development. However, due to technical reasons, Zhao’s method has been
applied only when the indices of the primes dividing the parameter D are all equal. In this
study, we overcome this problem for a certain family of CM elliptic curves and have succeeded
in removing the condition on the indices of the primes. In the proof, multiple use of Zhao’s
method is essential. It is expected that this method will make it possible to give a lower bound
of the p-adic valuations of the central values of the Hecke L-functions associated with all CM
elliptic curves defined over an imaginary quadratic field with class number one.

In part II, we give a certain answer to the problem of determining the ranks of two elliptic
curves defined over the field of rational numbers. Let p denote a prime number. Rodríguez-
Villegas and Zagier [RZ95] have given a necessary and sufficient condition that the rank of the
elliptic curve Ap : x3 + y3 = p is equal to 2 by the constant term of a polynomial defined by
a simple recurrence formula. There are two main results of this study. One is that we have
given another formula that is more efficient than the one they gave in some sense. The other
is that we have newly given a necessary and sufficient condition that the rank of the elliptic
curve E−p : y2 = x3 + px is equal to 2 by using a simple recurrence formula. One of the key
points of the proof is to derive a congruence relation modulo p between the algebraic part of
the critical value of the Hasse–Weil L-function of the elliptic curve Ap (resp. E−p) depending
on the prime number p and that of the central value of some Hecke L-function associated to
the prime-independent elliptic curve A1 : x3 + y3 = 1 (resp. E−1 : y2 = x3 + x). By using this
result, the computation of the ranks of these elliptic curves is reduced to a naive computation
of polynomials, which can be easily implemented using a computer.





Part I
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Chapter 1

Introduction

1.1 Background
First, let us briefly explain the algebraic part of the critical value of the Hasse–Weil L-function
for an elliptic curve. Let E be an elliptic curve defined over a number field K and L(E/K, s)
the Hasse–Weil L-function, conjectured to have an analytic continuation to the entire complex
plane. For each elliptic curve, a value called period is defined up to multiplication by a non-zero
algebraic number. For example, the value obtained by integrating an invariant differential of
an elliptic curve over some domain is a period. The detailed definition of a period is given in
Section 2.1, and here we fix a suitable period ΩE/K of E. There is a deep relationship between
the period ΩE/K and the critical value of L(E/K, s). We assume that L(E/K, s) has an analytic
continuation. Then, the value

L(E/K, 1)
ΩE/K

(1.1)

is expected to be algebraic. We call such a value the algebraic part of the critical value of
L(E/K, s). Note that the algebraic part depends on the choice of a period.

The Birch and Swinnerton–Dyer (BSD) conjecture asserts that if L(E/K, 1) 6= 0, then the
algebraic part (1.1) can be written in terms of arithmetic invariants of the elliptic curve E, that
is, the following equation, both sides of which lie in Q, holds:

L(E/K, 1)
ΩE/K

=
∏

p cp ·#X(E/K)√
|dK | · (#E(K)tors)2

, (1.2)

where dK is the discriminant of K, cp is the Tamagawa factor at the prime p and X(E/K) is
the Tate–Shafarevich group. The equality for the p-adic valuation of both sides of equation (1.2)
for each rational prime p is called the p-part of the BSD conjecture, which has also not been
completely proven. Hence, studying the p-adic valuations of the algebraic parts is important.

We are especially concerned with the 2-adic valuations of the algebraic parts. There are two
main reasons for focusing on p = 2. The first is that p = 2 is difficult to deal with in Iwasawa
theory. A common approach to the p-part of the BSD conjecture is now to prove the Iwasawa
main conjecture for elliptic curves. However currently, p = 2 is somewhat difficult to handle
in Iwasawa theory. In fact, results of Kato [Kat04], Skinner–Urban [SU14], Rubin [Rub91] and
others have been treated only for sufficiently large primes. Therefore, the case of p = 2 remains
as an exception. The second is the algebraic part seems to be mostly the 2-part. This is because
the Tamagawa factor cp takes integer values between 1 and 4 if an elliptic curve has additive or
split multiplicative reduction at p.
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In part I, we consider elliptic curves defined over Q(i) with complex multiplication by Z[i].
In this case, the p-adic valuation of the algebraic part makes sense for each prime number p
from the following theorems.

Theorem 1.1 (Hecke–Deuring). Let E be an elliptic curve defined over a number field F with
complex multiplication by the ring of integers OK of an imaginary quadratic field K.

(i) Assume that K ⊂ F and we write ψE/F be the Hecke character associated to E/F . Then

L(E/F, s) = L(ψE/F , s)L(ψE/F , s).

(ii) Assume that K 6⊂ F , and let F ′ = FK. We write ψE/F ′ be the Hecke character associated
to E/F ′. Then

L(E/F, s) = L(ψE/F ′ , s).

In particular, L(E/F, s) has an analytic continuation to the entire complex plane.

Proof. For example, see [Sil94, CHAPTER II, Theorem 10.5] and [Sil94, CHAPTER II, Corol-
lary 10.5.1].

Theorem 1.2 (Damerell’s Theorem). Let E be an elliptic curve defined over an imaginary
quadratic field K with complex multiplication by OK . We suppose the class number of K is
equal to one. Let L be the period lattice of E and take ΩE ∈ C× so that L = ΩEOK . Denote
the Hecke character of K associated to E by ψ. For each positive integer k, we have

L(ψk
, k)

Ωk
E

∈ Q.

Proof. For example, see [Dam70, Theorem 1] or [Rub99, Corollary 7.18].

Remark 1.3. When the class number ofK is not necessarily one in Theorem 1.2, the algebraicity
of the algebraic part follows, for example, from [GS81, Theorem 7.1].

Remark 1.4. As an aside, when E is defined over Q which does not necessarily have complex
multiplication, the results of Wiles and others ([Wil95], [TW95], [Bre+01]) show the analytic
continuation of L(E/Q, s). Furthermore, it follows from the results of Manin [Man72] and
Drinfel’d [Dri73] that the algebraic part of L(E/Q, 1) is indeed algebraic. The algebraic part of
the special value at s = 1 of the derivative of L(E/Q, s) is also defined with a slight modification,
and the algebraicity in that case is proved by Gross and Zagier [GZ86].

1.2 Previous research and main result
In 1997, Zhao [Zha97] has given a lower bound of the 2-adic valuations of the central values of
the Hecke L-functions associated to a certain family of elliptic curves ED : y2 = x3−Dx defined
over Q(i) with D ∈ Z[i] square-free. His method is based on the number of the primes dividing
D, and is sometimes referred to as Zhao’s method.

Several works are giving lower bounds of the p-adic valuations of various families of elliptic
curves with complex multiplication when p = 2, 3, using Zhao’s method. First, we give some
results for elliptic curves of the form y2 = x3 −Dx. Zhao has given a lower bound of the 2-adic
valuations when D = (π1 · · ·πn)2 ∈ Z[i] (πi ≡ 1 mod 4) is the square of the product of distinct
Gaussian primes in [Zha97] and when D = (p1 · · · pn)2 (pi ≡ 1 mod 8) is the square of the
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product of distinct rational primes in [Zha01]. He has also given it for D = 4(π1 · · ·πn)2 (πi ≡
1 mod 2 + 2i) in [Zha03]. Qiu and Zhang [QZ02a] have given a lower bound of the 2-adic
valuations for D = π1 · · ·πn, (π1 · · ·πr)2πr+1 · · ·πn (πi ≡ 1 mod 4). In the latter case D =
(π1 · · ·πr)2πr+1 · · ·πn, however, no proof has been given. Next, we give some results for elliptic
curves of the form y2 = x3 − 432D. Qiu and Zhang [QZ02b] have given a lower bound of the
3-adic valuations when D = (π1 · · ·πn)2 ∈ Z[ω] (πi ≡ 1 mod 6) is the square of the product of
distinct Eisenstein primes. Qiu [Qiu03] also has given it for D = (π1 · · ·πn)4 (πi ≡ 1 mod 6)
and for D = (π1 · · ·πn)3 (πi ≡ 1 mod 12). Kezuka [Kez21] has given a lower bound of the 3-adic
valuations for the elliptic curves y2 = x3 − 432D2 defined over Q when D is a cube-free integer
with (D, 3) = 1. There are also some studies on CM elliptic curves with these j-invariants being
not 0 or 1728 (cf. [Coa+15], [Coa+14], [Cho19]).

Let K = Q(i). We consider the elliptic curve E−D : y2 = x3+Dx defined over K for D ∈ K
which is coprime to 2. We write the Hecke character associated to E−D as ψ−D. We give a
lower bound for the 2-adic valuation of the algebraic part of L(ψ−D, 1). The following theorem
is the main result.

Theorem 1.5. Suppose D ∈ OK , quartic-free, and is congruent to 1 modulo 2 + 2i. Let ψ−D

be the Hecke character associated to the elliptic curve E−D : y2 = x3 +Dx defined over K. We
define L2(ψ−D, s) to be the Hecke L-function of ψ−D omitting the Euler factor corresponding
to the prime (1 + i)OK . If D /∈ K×2, then we have

v2

(
L2(ψ−D, 1)

Ω

)
≥ r(D)− 2

2 ,

where r(D) is the number of distinct primes dividing D, Ω = 2.6220575 . . . is the least positive
real element of the period lattice of E1 : y2 = x3 − x and v2 is the 2-adic valuation of Q2
normalized so that v2(2) = 1.

Remark 1.6. When D ∈ K×2, Zhao has given the lower bound (2r(D)−3)/2 [Zha03, Theorem
1]. Note that Zhao uses a period of E4D, while we use a period Ω of E1.

Remark 1.7. The condition that D ∈ OK , quartic-free and congruent to 1 modulo 2 + 2i in
Theorem 1.5 is not essential. If D ∈ K is not quartic-free, then we can take D0 ∈ OK so that
it is quartic-free and E−D is isomorphic to E−D0 over K. For any D ∈ OK which is coprime to
2, only one of {±D,±iD} is congruent to 1 modulo 2 + 2i. For more details, see Section 2.2.

Remark 1.8. The lower bound of Theorem 1.5 is expected to be sharp in the sense that there
exist elliptic curves E−D for which equality holds. See the numerical examples in Section 3.3.

We prove Theorem 1.5 combining Theorem 3.4 with Theorem 3.5. Here, Theorem 3.4 deals
with the case where all the indices of the primes dividing D are equal, and Theorem 3.5 deals
with the other case. The key of the proof of Theorem 3.4 and Theorem 3.5 is to consider not
only an elliptic curve E−D for a parameter D but also elliptic curves E−DT for all divisors DT

of D. Theorem 3.4 is proved by Zhao’s method, that is, using the induction on the number of
the primes dividing D. However, due to technical reasons, Zhao’s method can only be applied
to the case where all the indices of the primes dividing D are equal. In order to apply Zhao’s
method to the other case, we decompose D into D1D2D3, where Di is the product of the primes
dividing D whose indices are all equal to i. By iterating Zhao’s method for each Di, we give a
lower bound of the 2-adic valuation for general D and prove Theorem 3.5.
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We deal only with the family E−D : y2 = x3+Dx in this paper. However, the essence of the
proof of Theorem 3.5 is that D can be uniquely decomposed into the product of primes in K.
Therefore, our iterative Zhao’s method may be applicable to all CM elliptic curves defined over
imaginary quadratic fields with class number one.

After writing our paper [Nom22a] stating Theorem 1.5, we noticed that Kezuka has also
given a lower bound of the 3-adic valuations for the elliptic curves y2 = x3− 432D2 defined over
Q using an iterative Zhao’s method similar to ours in the proof of [Kez21, Theorem 2.4].

Part I is organized as follows. In chapter 2, we make some calculations on various invariants
of the elliptic curve E−D and write the L-value at s = 1 as a finite sum using a special value
of the Weierstrass ℘-function. In chapter 3, we give a lower bound of the 2-adic valuation of
the L-value by using Zhao’s method. For reference, numerical examples of a lower bound in
Theorem 1.5 are included at the end of part I. In the proof of Theorem 3.5, we use Zhao’s
method iteratively. For this reason, the proof is complicated, and please refer to the inserted
figures as necessary.
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Chapter 2

Preliminaries

2.1 BSD invariants
In this section, we make some calculations on various invariants of the elliptic curve E−D : y2 =
x3+Dx defined over K = Q(i). Since E−D is isomorphic to E−d4D over K for d ∈ K×, we may
assume that D ∈ OK and quartic-free. In the rest of part I, we consider only the elliptic curve
E−D : y2 = x3 +Dx defined over K for D ∈ OK that is coprime to 2 and quartic-free.

Proposition 2.1. The following holds:

#E−D(K)tors =


4 (D ∈ K×2),
10 (D = ±(1± 2i)),
2 (otherwise).

Proof. It is straightforward to verify the claim using the Nagell–Lutz theorem for K. In partic-
ular when D /∈ K×2, it is computed in [OS21, Lemma 6.2] and [OS21, Remark 6.3].

Proposition 2.2. Suppose D ∈ OK is congruent to 1 modulo 2 + 2i. The elliptic curve E−D

has bad reduction at all primes dividing DOK . Moreover, E−D has good reduction at the prime
(1 + i)OK if and only if (i/D)4 = i, where (·/·)4 is the quartic residue character.

Proof. Since the discriminant of the equation y2 = x3+Dx is (1+ i)12D3 and D is quartic-free,
the elliptic curve E−D is minimal at all primes dividing DOK . Therefore, the first claim follows.
We show that E−D has good reduction at (1 + i)OK when (i/D)4 = i using Tate’s algorithm.
In the other cases, we can show similarly that E−D has bad reduction at (1 + i)OK . From now
on, we follow Silverman’s notation and steps [Sil94, p.366].

We start from step 1. Set π = 1 + i and we have

∆ = π12D3, a1 = a2 = a3 = a6 = 0, a4 = D,

b2 = b6 = 0, b4 = 2D, b8 = −D2.

Since π | ∆, we proceed to Step 2. The curve Ẽ obtained by reduction of E at π has the singular
point (1, 0). Thus, we do the transformation x 7→ x+ 1 and obtain the new equation

y2 = x3 + 3x2 + (D + 3)x+ (D + 1)

whose reduction curve has the singular point (0, 0). Then, we have

a1 = a3 = 0, a2 = 3, a4 = D + 3, a6 = D + 1,
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b2 = 12, b4 = 2D + 6, b6 = 4D + 4, b8 = −D2 + 6D + 3.

We can easily check π | b2, π2 | a6, π3 | b6, b8 and proceed to Step 6. Let k be the residue
field OK/(π) and fix an algebraic closure k. For simplcity, we set ai,r = π−rai. The following
equations over k

Y 2 + a1Y − a2 ≡ (Y − α)2 mod π,
Y 2 + a3,1Y − a6,2 ≡ (Y − β)2 mod π

have the solution α = β = 1. Thus, we do the transformation y 7→ y+x+π and obtain the new
equation

y2 + 2xy + 2πy = x3 + 2x2 + (D + 3− 2π)x+ (D + 1− π2).

Then, we have

a1 = a2 = 2, a3 = 2π, a4 = D + 3− 2π, a6 = D + 1− π2,

b2 = 12, b4 = 2D + 6, b6 = 4D + 4, b8 = −D2 + 6D + 3.

We consider the factorization over k of the polynomial

P (T ) = T 3 + a2,1T
2 + a4,2T + a6,3.

If we write D = 1 + (2 + 2i)(s+ ti) for s, t ∈ Z, then we see that P (T ) = T 3 − (s− t− 1). By
properties of the quartic residue symbol, (i/D)4 = i is equivalent to s − t ≡ 3 mod 4. Thus,
P (T ) has the triple root T = 0 and we proceed to Step 8. Since the polynomial over k

Y 2 + a3,2Y − a6,4 = Y 2 − s

has the double root Y = 0 if s ≡ 0 mod 2 and Y = 1 if s ≡ 1 mod 2. We suppose s ≡ 0 mod 2
and proceed to Step 9. (For the case s ≡ 1 mod 2, we proceed to Step 9 after transformation
y 7→ y + π2.) Since π4 | a4 and π6 | a6, we proceed to Step 11. Then, the transformation
x 7→ π2x, y 7→ π3y leads to the new equation

y2 + 2
π
xy + 2

π2
y = x3 + 2

π2
x2 + D + 3− 2π

π4
x+ D + 1− π2

π6

whose discriminant is D3. Therefore, the elliptic curve E has good reduction at (1 + i)OK and
we finish Tate’s algorithm.

Remark 2.3. If (i/D)4 = i, then the minimal model of E−D at (1 + i)OK is{
y2 + (1− i)xy − iy = x3 − ix2 − D+1−2i

4 x+ iD+2+i
8 (s ≡ 0 mod 2),

y2 + (1− i)xy + (1− 2i)y = x3 − ix2 − D+1−6i
4 x+ iD+6+9i

8 (s ≡ 1 mod 2),

where D = 1 + (2 + 2i)(s+ ti) (s, t ∈ Z).
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Local informations at (1+i)OK including Kodaira symbols are summarized in Table 2.1. For
other primes that divide D, we obtain Table 2.2 by Tate’s algorithm. Here, Di is the product
of the primes dividing D whose indices are all equal to i.

(i/D)4 Kodaira Symbol m v f c

±1 I∗0 5 12 8 2
i I0 1 0 0 1
−i II∗ 9 12 4 1

Table 2.1: Local informations at (1 + i)OK

π | D Kodaira Symbol m v f c

π | D1 III 2 3 2 2
π | D2, (D1D3/π)2 = 1 I∗0 5 6 2 4
π | D2, (D1D3/π)2 = −1 I∗0 5 6 2 2

π | D3 III∗ 8 9 2 2

Table 2.2: Local informations at πOK (π | D)

Next, we recall the definition of the period of an elliptic curve appearing in the BSD conjec-
ture. For details, see [Tat95] or [DD10] for example. Let E be an elliptic curve defined over a
number field F and fix an invariant differential ω on E. Denote the normalized absolute value
at a place v of F by |·|v. Let ωo

v be a Néron differential at a finite place v. Then, we define

ΩE/F :=
∏
v∤∞

∣∣∣∣ ωωo
v

∣∣∣∣
v

∏
v|∞
real

∫
E(Fv)

|ω|
∏
v|∞

complex

2
∫
E(Fv)

ω ∧ ω,

where Fv is the completion of F at v. Note that ΩE/F is independent of the choice of ω by
the product formula and the choice of ωo

v. If we fix a Weierstrass model of E with discriminant
∆E/F , in terms of the minimal discriminant ideal dE/F , the period ΩE/F is rewritten as follows:

ΩE/F =
∣∣∣∣∣N(∆E/F )
N(dE/F )

∣∣∣∣∣
1/12 ∏

v|∞
real

∫
E(Fv)

|ω|
∏
v|∞

complex

2
∫
E(Fv)

ω ∧ ω.

Let ω1 = dx/2y be an invariant differntial of E1 : y2 = x3 − x and E0
1(R) the connected

component of E1(R) containing the identity of E1. Then, the period lattice of ω1 is of the form
ΩZ+ iΩZ, where

Ω :=
∫
E0

1(R)
ω1 =

∫ ∞

1

dx√
x3 − x

≒ 2.6220576.

Note that
∫
E1(C) ω1 ∧ ω1 is equal to the area of the fundamental parallelogram of the lattice

ΩZ+ iΩZ and therefore equal to Ω2.

Proposition 2.4. We have

ΩE−D/K =


4Ω2

N(D)1/4
((i/D)4 = i),

2Ω2

N(D)1/4
(otherwise).
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Proof. Fix an embedding Q ↪→ C and a quartic root (−D)1/4 ∈ C. We write E−D : y2 = x3+Dx
and E1 : Y 2 = X3 −X. Let ω−D = dx/2y an invariant differential on E−D. The transformaion
x = (−D)2/4X, y = (−D)3/4Y leads to an isomorphism over C between E−D and E1. Therefore,
we obtain ∫

E−D(C)
ω−D ∧ ω−D = N(D)−1/4

∫
E1(C)

ω1 ∧ ω1 = N(D)−1/4Ω2.

By Table 2.1 and Table 2.2, we have∣∣∣∣∣N(∆E/K)
N(dE/K)

∣∣∣∣∣
1/12

=
{
2 ((i/D)4 = i),
1 (otherwise).

Thus, the proposition follows.

2.2 L-value as a finite sum
In this section, we write the L-value at s = 1 as a finite sum using a special value of the
Weierstrass ℘-function. Theorem 2.10 has already been proved by Birch and Swinnerton–Dyer
[BS65]; however, for readers convenience, we calculate it again.

Let ψ−D be the Hecke character of K associated to E−D and let Ω =
∫∞
1 dx/

√
x3 − x be

a period of E1 : y2 = x3 − x. For a non-zero element g ∈ OK , Lg(ψ, s) denotes the Hecke
L-function of ψ omitting all Euler factors corresponding to the primes that divide gOK ; that is;

Lg(ψ, s) = L(ψ, s)
∏

p|gOK

(
1− ψ(p)

Nps

)
.

For a non-zero ideal g of OK , we define Lg(ψ, s) in the same way. Fix Q and Q2 as algebraic
closures of Q and Q2, and fix embeddings Q ↪→ Q2 and Q ↪→ C. Let v2 denote the 2-adic
valuation of Q2 normalized so that v2(2) = 1 and extend to Q2, which is also written as v2.

Proposition 2.5. Suppose D ∈ OK is congruent to 1 modulo 2+2i. Then, the following holds:

v2

(
L2D(ψ−D, 1)

Ω

)
= v2

(
L2(ψ−D, 1)

Ω

)
=


v2

(
L(ψ−D, 1)

Ω

)
− 1

2 ((i/D)4 = i),

v2

(
L(ψ−D, 1)

Ω

)
(otherwise).

Proof. For each prime π dividing D, we have ψ−D((π)) = 0, and ψ−D((1 + i)) = 0 if (i/D)4 6= i
by Proposition 2.2. When (i/D)4 = i, ψ−D((1 + i)) is non-zero and equal to u(1 + i) for some
u ∈ O×

K . Therefore, we have

v2

(
ψ−D((1 + i))
N(1 + i)

)
= v2

(
u(1 + i)

2

)
= −1

2 6= 0.

Thus, the 2-adic valuation of the Euler factor at (1 + i)OK is equal to −1/2.

As mentioned in Section 1.2, we iterate Zhao’s method. For this purpose, we first decompose
D uniquely up to units inOK according to the index of a prime dividingD, such asD(n)

1 D
(m)
2 D

(`)
3 ,

where

D
(n)
1 =

∏
π1,i∈S1

π1,i, D
(m)
2 =

∏
π2,j∈S2

π22,j , D
(`)
3 =

∏
π3,k∈S3

π33,k,
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and S1 = {π1,1, . . . , π1,n}, S2 = {π2,1, . . . , π2,m}, S3 = {π3,1, . . . , π3,`} are disjoint sets of distinct
primes of OK which are coprime to 2. Here, a prime of OK is said to be primary if it is congruent
to 1 modulo 2+2i. For a prime π which is coprime to 2, it is known that only one of {±π,±iπ}
is primary. Hence, all primes in Si are assumed to be primary, and D is congruent to 1 modulo
2 + 2i. We abbreviate D(∗)

i as Di if we do not care about the number of the primes in Si.
Next, we represent all divisors DT ofD as follows. Let T1 ⊂ {1, . . . , n}, T2 ⊂ {1, . . . ,m}, T3 ⊂

{1, . . . , `} be arbitrary subsets (including the case where T1, T2, and T3 are empty sets). Then,
we define

DT1 =
∏
i∈T1

π1,i, DT2 =
∏
j∈T2

π22,j , DT3 =
∏
k∈T3

π33,k

and DT = DT1DT2DT3 . When Ti = ∅ (i = 1, 2, 3), we define DTi = 1.
For a lattice L of C and integer k ≥ 0, we define the holomorphic function on the domain

Re(s) > 1 + k/2 by

Hk(z, s,L) =
∑
w∈L

′ (z + w)k

|z + w|2s .

Here,
∑′ implies that w = −z is excluded if z ∈ L. The function s 7→ Hk(z, s,L) has the

analytic continuation to the entire complex s-plane if k ≥ 1. We set

E∗
1 (z,L) = H1(z, 1,L).

Proposition 2.6 ([GS81, Proposition 5.5]). Let E be an elliptic curve over an imaginary
quadratic field K with complex multiplication by OK . Fix a Weierstrass model of E and take
ΩE ∈ C× such that the period lattice of E is ΩEOK . We write φ as the Hecke character of K
associated to E and suppose the conductor of φ divides a non-zero integral ideal g of K. Let B
be a minimal set consisting of ideals prime to g such that

Gal(K(E[g])/K) = {σb | b ∈ B},

where σb is the Artin symbol corresponding to b. We take ρ ∈ ΩEK
× such that ρΩ−1

E OK = g−1.
Then, for k ≥ 1, the following holds:

ρk

|ρ|2sLg(φ
k
, s) =

∑
b∈B

Hk(φ(b)ρ, s,L).

For the moment, we take ∆ ∈ OK , which is congruent to 1 modulo 2 + 2i, so that the
conductor of ψ−DT divides 4∆OK . Later, we explicitly define ∆ (see the paragraph after Lemma
3.1).

Lemma 2.7. We apply Proposition 2.6 to E = E−DT , φ = ψ−DT , g = 4∆OK . Then a set B
can be taken as

B = {(4c+∆), (4c+ (1 + 2i)∆) | c ∈ C},

where C is a complete system of representatives of (OK/∆OK)×.

Proof. Since the conductor of ψ−DT divides 4∆OK , [GS81, Lemma 4.7] shows that the field
K(E−DT [4∆]) coincides with K(4∆), the ray class field of K associated to the modulus 4∆OK .
Thus the following isomorphism via the Artin map holds:

Gal(K(E−DT [4∆])/K) ' (OK/4∆OK)×/O×
K .
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Hence the cardinality of B must be equal to 2 ·#(OK/∆OK)×. Therefore, it is sufficient to show
that the Artin symbols corresponding to any two different elements in B are different from each
other. We show that σ(4c+∆) 6= σ(4c′+∆) for c 6= c′ ∈ C. Assume that σ(4c+∆) = σ(4c′+∆). Then
4c + ∆ must be congruent to 4c′ + ∆ modulo 4∆. However, this implies that c and c′ belong
same equivalence class in (OK/∆OK)×, which is a contradiction. Other cases can be shown in
the same way.

We define the sign of ∆ by sgn(∆) = 1 if ∆ ≡ 1 mod 4 and sgn(∆) = −1 if ∆ ≡ 3+2i mod 4.
For simplicity, we set

εT = sgn(∆)
(−1
DT

) 1+sgn(∆)
2

4
∈ {±1}.

Lemma 2.8. For c ∈ C, we have

ψ−DT ((4c+∆)) = εT

(
c

DT

)
4
(4c+∆)

ψ−DT ((4c+ (1 + 2i)∆)) = εT

(
c

DT

)
4
(4c+ (1 + 2i)∆).

Proof. As is well-known, for an ideal a of OK prime to 4DT , it holds that

ψ−DT (a) =
(−DT

α

)
4
α (a = (α), α ≡ 1 mod 2 + 2i).

For example, see [Sil94, CHAPTER II, Exercise 2.34]. Since 4c+∆ ≡ 1 mod 2 + 2i, we have

ψ−DT ((4c+∆)) =
( −DT

4c+∆

)
4
(4c+∆)

=
( −1
4c+∆

)
4

(
DT

4c+∆

)
4
(4c+∆)

= sgn(∆)
(

DT

4c+∆

)
4
(4c+∆).

Let pTi be the number of distinct primes that divide DTi and that are congruent to 3+2i modulo
4. First, we consider the case of sgn(∆) = +1. By the quartic reciprocity law, we can calculate
as follows: (

DT

4c+∆

)
4
=
∏
i∈T1

(
π1,i

4c+∆

)
4

∏
j∈T2

(
π2,j

4c+∆

)2

4

∏
k∈T3

(
π3,k

4c+∆

)3

4

=
∏
i∈T1

(
4c+∆
π1,i

)
4

∏
j∈T2

(
4c+∆
π2,j

)2

4

∏
k∈T3

(
4c+∆
π3,k

)3

4

=
∏
i∈T1

(
−c
π1,i

)
4

∏
j∈T2

(
−c
π2,j

)2

4

∏
k∈T3

(
−c
π3,k

)3

4

= (−1)pT1+pT3
∏
i∈T1

(
c

π1,i

)
4

∏
j∈T2

(
c

π2,j

)2

4

∏
k∈T3

(
c

π3,k

)3

4

=
(−1
DT

)
4

(
c

DT

)
4
.



19 2.2. L-value as a finite sum

In the same way, if sgn(∆) = −1, then(
DT

4c+∆

)
4
=
∏
i∈T1

(
π1,i

4c+∆

)
4

∏
j∈T2

(
π2,j

4c+∆

)2

4

∏
k∈T3

(
π3,k

4c+∆

)3

4

= (−1)pT1+pT3
∏
i∈T1

(
4c+∆
π1,i

)
4

∏
j∈T2

(
4c+∆
π2,j

)2

4

∏
k∈T3

(
4c+∆
π3,k

)3

4

= (−1)pT1+pT3
∏
i∈T1

(
−c
π1,i

)
4

∏
j∈T2

(
−c
π2,j

)2

4

∏
k∈T3

(
−c
π3,k

)3

4

=
∏
i∈T1

(
c

π1,i

)
4

∏
j∈T2

(
c

π2,j

)2

4

∏
k∈T3

(
c

π3,k

)3

4

=
(
c

DT

)
4
.

The rest can be proved similarly.

Lemma 2.9. Denote the period lattice ΩOK of E1 : y2 = x3 − x as LΩ. Let ℘(z) = ℘(z,LΩ)
be the Weierstrass ℘-function and let ζ(z) = ζ(z,LΩ) be the Weierstrass ζ-function. Then for
c ∈ C, we have

E∗
1

(
cΩ
∆ + Ω

4 ,LΩ

)
+ E∗

1

(
cΩ
∆ + (1 + 2i)Ω

4 ,LΩ

)
= 2

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
+ ℘′(cΩ/∆)

2

{
1

℘(cΩ/∆)− (1 +
√
2)

+ 1
℘(cΩ/∆)− (1−

√
2)

}

+
√
2 +

{
2 +

√
2

℘(cΩ/∆)− (1 +
√
2)

− 2−
√
2

℘(cΩ/∆)− (1−
√
2)

}
,

where $ = 3.1415 . . . denotes pi.

Proof. For a lattice L = uZ+ vZ (Im(v/u) > 0) of C, we set

s2(L) = lim
s→+0

∑
w∈L\{0}

1
w2|w|2s , A(L) = uv − uv

2$i .

Then, the identity E∗
1 (z,L) = ζ(z,L)− zs2(L)− zA(L)−1 holds (cf. [GS81, Proposition 1.5]). It

is easy to see s2(LΩ) = 0 and A(LΩ) = Ω2/$. Hence, we see that

E∗
1 (z,LΩ) = ζ(z,LΩ)−

$z

Ω2 . (2.1)

The addition formula

ζ(z1 + z2,L) = ζ(z1,L) + ζ(z2,L) +
1
2
℘′(z1,L)− ℘′(z2,L)
℘(z1,L)− ℘(z2,L)

and equation (2.1) lead to

E∗
1

(
cΩ
∆ + Ω

4 ,LΩ

)
= ζ

(
cΩ
∆ + Ω

4

)
− $

Ω2

(
cΩ
∆ + Ω

4

)
= ζ

(
cΩ
∆

)
+ ζ

(Ω
4

)
+ 1

2
℘′(cΩ/∆)− ℘′(Ω/4)
℘(cΩ/∆)− ℘(Ω/4) − $

4Ω − $

Ω

(
c

∆

)
.
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Similarly, we obtain

E∗
1

(
cΩ
∆ + (1 + 2i)Ω

4 ,LΩ

)
= ζ

(
cΩ
∆

)
+ ζ

((1 + 2i)Ω
4

)
+ 1

2
℘′(cΩ/∆)− ℘′((1 + 2i)Ω/4)
℘(cΩ/∆)− ℘((1 + 2i)Ω/4) − (1− 2i)$

4Ω − $

Ω

(
c

∆

)
.

Moreover from [Zha03, (2.7)], we know ℘(Ω/4) = 1+
√
2, ℘′(Ω/4) = −4−2

√
2, ℘((1+2i)Ω/4) =

1−
√
2, ℘′((1 + 2i)Ω/4) = 4− 2

√
2 and

ζ

(Ω
4

)
+ ζ

((1 + 2i)Ω
4

)
− (1− i)$

2Ω =
√
2.

By combining these results, the lemma holds.

Theorem 2.10 (cf. [BS65]). We put χ = χ(DT ) = ((1 + i)/DT )4. Then, the following holds:

εT∆
Ω L2∆(ψ−DT , 1)

=



√
2
4
∑
c∈C

(
c

DT

)
4
+ 1√

2
∑
c∈C

(
c

DT

)
4

℘(cΩ/∆) + 1
℘(cΩ/∆)2 − 2℘(cΩ/∆)− 1 ((i/DT )4 = ±1),

1
8
∑
c∈C

(
c

DT

)
4

{ (1− i)χ
1− (1− i)χ

℘′(cΩ/∆)
℘(cΩ/∆) + 2℘′(cΩ/∆)(℘(cΩ/∆)− 1)

℘(cΩ/∆)2 − 2℘(cΩ/∆)− 1

}
((i/DT )4 = i),

1
4
∑
c∈C

(
c

DT

)
4

℘′(cΩ/∆)(℘(cΩ/∆)− 1)
℘(cΩ/∆)2 − 2℘(cΩ/∆)− 1 ((i/DT )4 = −i).

Proof. Take ΩT ∈ C× so that the period lattice of the elliptic curve E−DT : y2 = x3 + DTx
is ΩTOK and set α = Ω/ΩT . In Proposition 2.6, substituting k = s = 1, g = (4∆), ρ =
ΩT /(4∆),L = ΩTOK leads to

4∆
ΩT

L2∆(ψ−DT , 1) =
∑
b∈B

E∗
1

(
ψ−DT (b)

ΩT

4∆ ,ΩTOK

)
. (2.2)

Moreover, by using Lemma 2.7 and Lemma 2.8, the right-hand side of the equation (2.2) can be
calculated as

∑
c∈C

E∗
1

(
εT

(
c

DT

)
4

4c+∆
4∆

Ω
α
,
Ω
α
OK

)
+
∑
c∈C

E∗
1

(
εT

(
c

DT

)
4

4c+ (1 + 2i)∆
4∆

Ω
α
,
Ω
α
OK

)
.

Note that for λ ∈ C× and a lattice L of C, E∗
1 (λz, λL) = λ−1E∗

1 (z,L) holds. Thus, by Lemma
2.9, we have

εT∆
Ω L2∆(ψ−DT , 1) =

1
4
∑
c∈C

(
c

DT

)
4

{
E∗
1

(
cΩ
∆ + Ω

4 ,LΩ

)
+ E∗

1

(
cΩ
∆ + (1 + 2i)Ω

4 ,LΩ

)}

= 1
4
∑
c∈C

(
c

DT

)
4
(f1(c) + f2(c) + g(c)), (2.3)

where

f1(c) = 2
{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
,
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f2(c) =
℘′(cΩ/∆)

2

{
1

℘(cΩ/∆)− (1 +
√
2)

+ 1
℘(cΩ/∆)− (1−

√
2)

}
,

g(c) =
√
2 +

{
2 +

√
2

℘(cΩ/∆)− (1 +
√
2)

− 2−
√
2

℘(cΩ/∆)− (1−
√
2)

}
.

The functions f1(c) and f2(c) are odd with respect to c, and g(c) is even with respect to c. We
prove by cases according to the value (i/DT )4.

First, we consider the case of (i/DT )4 = ±1. Since (−1/DT )4 = 1, the function (c/DT )4
is even with respect to c. We can take C so that if c ∈ C, then −c ∈ C because of (2,∆) = 1.
Thus

∑
c(c/DT )4f1(c) and

∑
c(c/DT )4f2(c) must be equal to 0. Next, we consider the case of

(i/DT )4 = −i. Since (−1/DT )4 = −1, the function (c/DT )4 is odd with respect to c. As in the
previous case,

∑
c(c/DT )4g(c) is equal to 0. Furthermore, we can take C so that if c ∈ C, then

ic ∈ C. Then, the value(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
+
(
ic

DT

)
4

{
ζ

(
icΩ
∆

)
− $

Ω

(
ic

∆

)}

is equal to 0. Hence, we have
∑

c(c/DT )4f1(c) = 0. Finally, we consider the case of (i/DT )4 = i.
Note that the value

∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}

does not depend on the choice of C. In fact, we can show it by using the identities ζ(z + 1) =
ζ(z) +$ and ζ(z + i) = ζ(z)−$i. Therefore, the transformation c 7→ (1 + i)c leads to

∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}

=
∑
c∈C

((1 + i)c
DT

)
4

{
ζ

((1 + i)cΩ
∆

)
− $

Ω

((1 + i)c
∆

)}

= χ
∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
+ ζ

(
icΩ
∆

)
+ 1

2
℘′(cΩ/∆)− ℘′(icΩ/∆)
℘(cΩ/∆)− ℘(icΩ/∆) − (1− i)$

Ω

(
c

∆

)}

= (1− i)χ
∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
+ 1

4
℘′(cΩ/∆)
℘(cΩ/∆) − $

Ω

(
c

∆

)}

= (1− i)χ
∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
+ (1− i)χ

4
∑
c∈C

(
c

DT

)
4

℘′(cΩ/∆)
℘(cΩ/∆) .

Thus, we see that

∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
= (1− i)χ

1− (1− i)χ
1
4
∑
c∈C

(
c

DT

)
4

℘′(cΩ/∆)
℘(cΩ/∆) .

We substitute these results into (2.3) and the theorem follows.

We set P(c) = ℘(cΩ/∆),P ′(c) = ℘′(cΩ/∆) and L∗
2∆(ψ−DT , 1) = εT∆L2∆(ψ−DT , 1) for

simplicity. Note that we have

v2

(
L∗
2∆(ψ−DT , 1)

Ω

)
= v2

(
L2∆(ψ−DT , 1)

Ω

)
.
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As in the proof of Theorem 2.10, we take C so that if c ∈ C, then −c,±ic ∈ C. Let V be the
subset of C consisting of all primary elements, that is,

V = {c ∈ C | c ≡ 1 mod 2 + 2i}.

We can rewrite the sums over C in Theorem 2.10 as the sums over V . For example if (i/DT )4 = 1,
then we have

1√
2
∑
c∈C

(
c

DT

)
4

P(c) + 1
P(c)2 − 2P(c)− 1 =

∑
c∈V

(
c

DT

)
4

2
√
2(3P(c)2 − 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) .

The same calculation yields the following corollary.

Corollary 2.11. Under the same conditions as Theorem 2.10, we have

L∗
2∆(ψ−DT , 1)

Ω

=



√
2
4
∑
c∈C

(
c

DT

)
4
+
∑
c∈V

(
c

DT

)
4

2
√
2(3P(c)2 − 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ((i/DT )4 = 1),
√
2
4
∑
c∈C

(
c

DT

)
4
+
∑
c∈V

(
c

DT

)
4

2
√
2P(c)(P(c)2 + 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ((i/DT )4 = −1),

∑
c∈V

(
c

DT

)
4

P ′(c)
P(c)

χ(P(c)4 − 6P(c)2 + 1) + (P(c)3 + P(c))
(P(c)2 − 2P(c)− 1)(P(c) + 2P(c)− 1) ((i/DT )4 = i),

∑
c∈V

(
c

DT

)
4

P ′(c)(P(c)2 + 1)
(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ((i/DT )4 = −i).
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Chapter 3

Zhao’s method

3.1 2-adic valuation of L-value

In Corollary 2.11, we define

W1(c) =
2
√
2(3P(c)2 − 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ,

W−1(c) =
2
√
2P(c)(P(c)2 + 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ,

Wi(c) =
P ′(c)
P(c)

χ(P(c)4 − 6P(c)2 + 1) + (P(c)3 + P(c))
(P(c)2 − 2P(c)− 1)(P(c) + 2P(c)− 1) ,

W−i(c) =
P ′(c)(P(c)2 + 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) .

Lemma 3.1. For c ∈ V , it holds that

v2(W1(c)) = v2(W−1(c)) = v2(Wi(c)) = v2(W−i(c)) = −1
2 .

Proof. [BS65, Lemma 5] shows

v2(P(c)2 − 2P(c)− 1) = v2(P(c)2 + 2P(c)− 1) = 7
4 ,

v2(P(c)− 1) = 1
2 , v2(P(c)2 − 1) = 1, v2(P(c)2 + 1) = 3

2 .

Thus, we have

v2(3P(c)2 − 1) = v2(P(c)2 − 3) = 3
2 , v2(P(c)) = 0,

and v2(P ′(c)) = 3/2 from the identity ℘′(z)2 = 4℘(z)3−4℘(z). The claim follows from here.

We consider a summation over T of the equations in Corollary 2.11. Here, we divide the
range of T into several cases and define ∆ for each of these cases. We define ∆i as the radical
of Di; that is;

∆1 =
∏

π1,i∈S1

π1,i, ∆2 =
∏

π2,j∈S2

π2,j , ∆3 =
∏

π3,k∈S3

π3,k.
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If we run T1 over all subsets of {1, . . . , n} and T2 = T3 = ∅, then we define ∆ to be ∆1. In
general, we define ∆ as follows:

∆ =



∆1 (T1 ⊂ {1, . . . , n}, T2 = ∅, T3 = ∅),
∆2 (T1 = ∅, T2 ⊂ {1, . . . ,m}, T3 = ∅),
∆3 (T1 = ∅, T2 = ∅, T3 ⊂ {1, . . . , `}),
∆1∆2 (T1 ⊂ {1, . . . , n}, T2 ⊂ {1, . . . ,m}, T3 = ∅),
∆2∆3 (T1 = ∅, T2 ⊂ {1, . . . ,m}, T3 ⊂ {1, . . . , `}),
∆1∆3 (T1 ⊂ {1, . . . , n}, T2 = ∅, T3 ⊂ {1, . . . , `}),
∆1∆2∆3 (T1 ⊂ {1, . . . , n}, T2 ⊂ {1, . . . ,m}, T3 ⊂ {1, . . . , `}).

Here, for example, “T1 ⊂ {1, . . . , n}, T2 = ∅, T3 = ∅” impies “T1 runs over all subsets of
{1, . . . , n}, T2 and T3 are both empty”. From [ST68, Theorem 12], we see that the conductor of
the elliptic curve E−DT is the square of the conductor of the Hecke character ψ−DT . Therefore
by Table 2.1 and Table 2.2, it holds that the conductor of ψ−DT divides 4∆OK .

Lemma 3.2. We have the following lower bound of the 2-adic valuation:

v2

(∑
T

(
c

DT

)
4

)
≥



n/2 (T1 ⊂ {1, . . . , n}, T2 = ∅, T3 = ∅),
m (T1 = ∅, T2 ⊂ {1, . . . ,m}, T3 = ∅),
`/2 (T1 = ∅, T2 = ∅, T3 ⊂ {1, . . . , `}),
n/2 +m (T1 ⊂ {1, . . . , n}, T2 ⊂ {1, . . . ,m}, T3 = ∅),
m+ `/2 (T1 = ∅, T2 ⊂ {1, . . . ,m}, T3 ⊂ {1, . . . , `}),
(n+ `)/2 (T1 ⊂ {1, . . . , n}, T2 = ∅, T3 ⊂ {1, . . . , `}),
n/2 +m+ `/2 (T1 ⊂ {1, . . . , n}, T2 ⊂ {1, . . . ,m}, T3 ⊂ {1, . . . , `}).

Proof. We only prove the case of DT = DT1 . We only need to show that

∑
T1⊂{1,...,n}

(
c

DT1

)
4
=
{
1 +

(
c

π1,1

)
4

}
· · ·
{
1 +

(
c

π1,n

)
4

}
.

We show by induction on n. Clearly, it holds for n = 1. Suppose it is true for 1, . . . , n − 1.
Then, we have

∑
T1⊂{1,...,n}

(
c

DT1

)
4
=

∑
T1⊂{1,...,n−1}

(
c

DT1

)
4
+

∑
T1⊂{1,...,n}

n∈T1

(
c

DT1

)
4

=
∑

T1⊂{1,...,n−1}

(
c

DT1

)
4
+
(

c

π1,n

)
4

∑
T1⊂{1,...,n−1}

(
c

DT1

)
4

=
{
1 +

(
c

π1,n

)
4

} ∑
T1⊂{1,...,n−1}

(
c

DT1

)
4

=
{
1 +

(
c

π1,1

)
4

}
· · ·
{
1 +

(
c

π1,n

)
4

}
,

where the last equality follows from the induction hypothesis. Thus, it is true for n. This
completes the proof.
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Proposition 3.3. The following holds:

v2

(∑
T

L∗
2∆(ψ−DT , 1)

Ω

)

≥



n− 1
2 (T1 ⊂ {1, . . . , n}, T2 = ∅, T3 = ∅),

2m− 1
2 (T1 = ∅, T2 ⊂ {1, . . . ,m}, T3 = ∅),

`− 1
2 (T1 = ∅, T2 = ∅, T3 ⊂ {1, . . . , `}),

n+ 2m− 1
2 (T1 ⊂ {1, . . . , n}, T2 ⊂ {1, . . . ,m}, T3 = ∅),

2m+ `− 1
2 (T1 = ∅, T2 ⊂ {1, . . . ,m}, T3 ⊂ {1, . . . , `}),

n+ `− 1
2 (T1 ⊂ {1, . . . , n}, T2 = ∅, T3 ⊂ {1, . . . , `}),

n+ 2m+ `− 1
2 (T1 ⊂ {1, . . . , n}, T2 ⊂ {1, . . . ,m}, T3 ⊂ {1, . . . , `}).

Proof. We only prove the case of DT = DT1 . Consider the summation over T1 for the equations
in Corollary 2.11. Then, we have ∆ = ∆1 and

∑
T1

L∗
2∆1

(ψ−DT1
, 1)

Ω =



√
2
4
∑
T1

∑
c∈C

(
c

DT1

)
4
+
∑
c∈V

W1(c)
∑
T1

(
c

DT1

)
4

((i/DT1)4 = 1),
√
2
4
∑
T1

∑
c∈C

(
c

DT1

)
4
+
∑
c∈V

W−1(c)
∑
T1

(
c

DT1

)
4

((i/DT1)4 = −1),

∑
c∈V

Wi(c)
∑
T1

(
c

DT1

)
4

((i/DT1)4 = i),

∑
c∈V

W−i(c)
∑
T1

(
c

DT1

)
4

((i/DT1)4 = −i),

where T1 runs over all subsets of {1, . . . , n}. By Lemma 3.1 and Lemma 3.2, for any ◦ ∈ {±1,±i},
we have

v2

∑
c∈V

W◦(c)
∑
T1

(
c

DT1

)
4

 ≥ min
c∈V

v2(W◦(c)) + v2

∑
T1

(
c

DT1

)
4

 = −1
2 + n

2 .

Since

∑
c∈C

(
c

DT1

)
4
=
{
0 (T1 6= ∅),
#C (T1 = ∅),

it holds that

v2

√
2
4
∑
T1

∑
c∈C

(
c

DT1

)
4

 = v2(#C)− 3
2 ≥ 2n− 3

2 >
n− 1
2 .

The proposition follows from this.
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3.2 Proof of the main theorems
Theorem 3.4. Let ψ−D be the Hecke character associated to the elliptic curve E−D : y2 =
x3 +Dx over K and Ω =

∫∞
1 dx/

√
x3 − x a period of E1 : y2 = x3 − x. Then, we have

v2

(
L2(ψ−D, 1)

Ω

)
≥



n− 2
2 (D = D

(n)
1 ),

2m− 3
2 (D = D

(m)
2 ),

`− 2
2 (D = D

(`)
3 ).

Proof. We only prove the case of D = D
(n)
1 . When T1 = {1, . . . , n}, we see that E−DT1

= E−D
(n)
1

and L∗
2∆1

(ψ−DT1
, 1) = L∗

2(ψ−D
(n)
1
, 1) holds by Corollary 2.5. When T1 = ∅, the elliptic curve

E−DT1
= E−1 has bad reduction at the prime (1 + i)OK . Therefore, we have

L∗
2∆1

(ψ−1, 1) = L∗
∆1

(ψ−1, 1) = L∗(ψ−1, 1)
n∏

i=1

(
1−

ψ−1((π1,i))
N(π1,i)

)
.

Since L(ψ−1, 1) = Ω/(2
√
2) (cf. [BS65, p.87]), we obtain

v2

(
L∗
2∆1

(ψ−1, 1)
Ω

)
=

n∑
i=1

v2

(
π1,i −

(
−1
π1,i

)
4

)
− 3

2 ≥ n− 3
2 . (3.1)

We prove the theorem by induction on n. For n = 1, by Proposition 3.3, we see that the 2-adic
valuation of

L∗
2∆1

(ψ−1, 1)
Ω +

L∗
2(ψ−D

(n)
1
, 1)

Ω (3.2)

is greater than −1/2. Since the 2-adic valuation of the first term in (3.2) is greater than or equal
to −1/2 by (3.1), the valuation of the second term must also be greater than or equal to −1/2.
Thus, it holds for n = 1. Suppose it is true for 1, . . . , n− 1. Then by Proposition 3.3, the 2-adic
valuation of

L∗
2∆1

(ψ−1, 1)
Ω +

∑
∅ 6=T1⊊{1,...,n}

L∗
2∆1

(ψ−DT1
, 1)

Ω +
L∗
2(ψ−D

(n)
1
, 1)

Ω (3.3)

is greater than (n − 2)/2. The valuation of the first term in (3.3) is greater than or equal to
(n− 2)/2 by (3.1). By using the induction hypothesis, it holds that

v2

 ∑
∅ 6=T1⊊{1,...,n}

L∗
2∆1

(ψ−DT1
, 1)

Ω


= v2

 ∑
∅ 6=T1⊊{1,...,n}

L∗
2(ψ−DT1

, 1)
Ω

∏
π1,i∤DT1

(
1−

ψ−DT1
((π1,i))

N(π1,i)

)
≥ min

∅ 6=T1⊊{1,...,n}

#T1 − 2
2 +

∑
π1,i∤DT1

v2
(
π1,i − ψ−DT1

((π1,i))
)

≥ min
∅ 6=T1⊊{1,...,n}

{#T1 − 2
2 + n−#T1

2

}
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= n− 2
2 .

Thus, it also holds for n and we obtain the theorem.

Theorem 3.5. Under the same conditions as Theorem 3.4, we have

v2

(
L2(ψ−D, 1)

Ω

)
≥



n+m− 2
2 (D = D

(n)
1 D

(m)
2 ),

m+ `− 2
2 (D = D

(m)
2 D

(`)
3 ),

n+ `− 2
2 (D = D

(n)
1 D

(`)
3 ),

n+m+ `− 2
2 (D = D

(n)
1 D

(m)
2 D

(`)
3 ).

Proof. We only prove the case of D = D
(n)
1 D

(m)
2 by double induction on n and m based on the

following steps (see Figure 3.1 and Figure 3.2).

Step 1 It holds for (1,m) for all m.

Step 2 It holds for (n, 1) for all n.

Step 3 If it holds for (n0,m0) 6= (n,m) (1 ≤ n0 ≤ n, 1 ≤ m0 ≤ m), then (n,m) holds.

1 2 · · · n− 1 n

1

2

...

m− 1

m

Figure 3.1: Step 1 and Step 2

1 2 · · · n− 1 n

1

2

...

m− 1

m

Figure 3.2: Step 3

First, we show Step 1 by induction on m. For m = 1, the 2-adic valuation of

L∗
2∆1∆2

(ψ−1, 1)
Ω︸ ︷︷ ︸

T1=T2=∅

+
L∗
2∆1∆2

(ψ−D
(1)
2
, 1)

Ω︸ ︷︷ ︸
T1=∅,T2={1}

+
L∗
2∆1∆2

(ψ−D
(1)
1
, 1)

Ω︸ ︷︷ ︸
T1={1},T2=∅

+
L∗
2(ψ−D

(1)
1 D

(1)
2
, 1)

Ω︸ ︷︷ ︸
T1={1},T2={1}

(3.4)

is greater than 0 from Proposition 3.3. Therefore, we need to show the first three terms of (3.4)
is greater than or equal to 0. For the first term, we see that

v2

(
L∗
2∆1∆2

(ψ−1, 1)
Ω

)
= v2

(
L∗
2(ψ−1, 1)

Ω

(
1−

ψ−1((π1,1))
N(π1,1)

)(
1−

ψ−1((π2,1))
N(π2,1)

))

≥ −3
2 + 1 + 1

> 0.
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For the second term, by Theorem 3.4, we have

v2

L∗
2∆1∆2

(ψ−D
(1)
2
, 1)

Ω

 = v2

L∗
2(ψ−D

(1)
2
, 1)

Ω

1− ψ−D
(1)
2
((π1,1))

N(π1,1)

 ≥ −1
2 + 1 > 0.

For the third term, we can show that the 2-adic valuation is greater than 0 similarly to the
second term. Thus it holds for m = 1. Suppose it is true for 1, . . . ,m − 1. Then the 2-adic
valuation of

L∗
2∆1∆2

(ψ−1, 1)
Ω︸ ︷︷ ︸

T1=T2=∅

+
∑

∅ 6=T2⊂{1,...,m}

L∗
2∆1∆2

(ψ−DT2
, 1)

Ω +
L∗
2∆1∆2

(ψ−D
(1)
1
, 1)

Ω︸ ︷︷ ︸
T1={1},T2=∅

+
∑

∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−D
(1)
1 DT2

, 1)

Ω +
L∗
2(ψ−D

(1)
1 D

(m)
2
, 1)

Ω︸ ︷︷ ︸
T1={1},T2={1,...,m}

(3.5)

is greater than (m− 1)/2 from Proposition 3.3. Therefore, we need to show the first four terms
of (3.5) is greater than or equal to (m− 1)/2. For the first term, we see that

v2

(
L∗
2∆1∆2

(ψ−1, 1)
Ω

)
= v2

L∗
2(ψ−1, 1)

Ω

(
1−

ψ−1((π1,1))
N(π1,1)

)
m∏
j=1

(
1−

ψ−1((π2,j))
N(π2,j)

)
≥ −3

2 + 1 +m

>
m− 1

2 .

For the second term, by Theorem 3.4, we have

v2

 ∑
∅ 6=T2⊂{1,...,m}

L∗
2∆1∆2

(ψ−DT2
, 1)

Ω


≥ min

∅ 6=T2⊂{1,...,m}

v2
L∗

2(ψ−DT2
, 1)

Ω

(
1−

ψ−DT2
((π1,1))

N(π1,1)

) ∏
π2,j ∤DT2

(
1−

ψ−DT2
((π2,j))

N(π2,j)

)
≥ min

∅ 6=T2⊂{1,...,m}

{2#T2 − 3
2 + 1 + (m−#T2)

}
>
m− 1

2 .

For the third term, by Theorem 3.4, it follows

v2

L∗
2∆1∆2

(ψ−D
(1)
1
, 1)

Ω

 = v2

L∗
2(ψ−D

(1)
1
, 1)

Ω

m∏
j=1

1− ψ−D
(1)
1
((π2,j))

N(π2,j)


≥ −1

2 + 1
2 ·m

= m− 1
2 .

For the fourth term, by the induction hypothesis, it holds

v2

 ∑
∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−D
(1)
1 DT2

, 1)

Ω
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≥ min
∅ 6=T2⊊{1,...,m}

v2
L∗

2(ψ−D
(1)
1 DT2

, 1)

Ω
∏

π2,j ∤DT2

1− ψ−D
(1)
1 DT2

((π2,j))

N(π2,j)


≥ 1 + #T2 − 2

2 + 1
2 · (m−#T2)

= m− 1
2 .

Thus it holds for m and Step 1 is done.
By a similar calculation, Step 2 can be shown by induction on n. We show Step 3. Suppose

it is true for (n0,m0) (1 ≤ n0 ≤ n, 1 ≤ m0 ≤ m, (n0,m0) 6= (n,m)). The 2-adic valuation of

L∗
2∆1∆2

(ψ−1, 1)
Ω︸ ︷︷ ︸

T1=T2=∅

+
∑

∅ 6=T2⊂{1,...,m}

L∗
2∆1∆2

(ψ−DT2
, 1)

Ω +
∑

∅ 6=T1⊂{1,...,n}

L∗
2∆1∆2

(ψ−DT1
, 1)

Ω

+
∑

∅ 6=T1⊊{1,...,n}
∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−DT1DT2
, 1)

Ω +
∑

∅ 6=T1⊊{1,...,n}

L∗
2∆1∆2

(ψ−DT1D
(m)
2
, 1)

Ω

+
∑

∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−D
(n)
1 DT2

, 1)

Ω +
L∗
2(ψ−D

(n)
1 D

(m)
2
, 1)

Ω︸ ︷︷ ︸
T1={1,...,n},T2={1,...,m}

(3.6)

is greater than (n+m− 2)/2 from Proposition 3.3 (see Figure 3.3).

1 2 · · · n− 1 n

1

2

...

m− 1

m

Figure 3.3: Equation (3.6)

Therefore, we need to show the first sixth terms of (3.6) is greater than or equal to (n+m−2)/2.
We calculate the 2-adic valuation for the first term, second term and fourth term. For the others
term, one could calculate similarly. For the first term, we see that

v2

(
L∗
2∆1∆2

(ψ−1, 1)
Ω

)
= v2

L∗
2(ψ−1, 1)

Ω

n∏
i=1

(
1−

ψ−1((π1,i))
N(π1,i)

)
m∏
j=1

(
1−

ψ−1((π2,j))
N(π2,j)

)
≥ −3

2 + n+m

>
n+m− 2

2 .
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For the second term, by Theorem 3.4, it follows

v2

 ∑
∅ 6=T2⊂{1,...,m}

L∗
2∆1∆2

(ψ−DT2
, 1)

Ω


≥ min

∅ 6=T2⊂{1,...,m}

v2
L∗

2(ψ−DT2
, 1)

Ω

n∏
i=1

(
1−

ψ−DT2
((π1,i))

N(π1,i)

) ∏
π2,j ∤DT2

(
1−

ψ−DT2
((π2,j))

N(π2,j)

)
≥ min

∅ 6=T2⊂{1,...,m}

{2#T2 − 3
2 + 1 · n+ 1 · (m−#T2)

}
>
n+m− 2

2 .

For the fourth term, by the induction hypothesis, it holds

v2

 ∑
∅ 6=T1⊊{1,...,n}
∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−DT1DT2
, 1)

Ω


≥ min

∅ 6=T1⊊{1,...,n}
∅ 6=T2⊊{1,...,m}

v2
L∗

2(ψ−DT1DT2
, 1)

Ω
∏

π1,i∤DT1

(
1−

ψ−DT1DT2
((π1,i))

N(π1,i)

) ∏
π2,j ∤DT2

(
1−

ψ−DT1DT2
((π2,j))

N(π2,j)

)
≥ min

∅ 6=T1⊊{1,...,n}
∅ 6=T2⊊{1,...,m}

{#T1 +#T2 − 2
2 + 1

2 · (n−#T1) +
1
2 · (m−#T2)

}
= n+m− 2

2 .

Thus it is true for (n0,m0) = (n,m) and Step 3 is done. This completes the proof.

3.3 Numerical Examples
As mentioned in Remark 1.8, the lower bounds in Theorem 3.4 and Theorem 3.5 are expected
to be sharp in the sense that there exist elliptic curves E−D for which equality holds. We have
listed the 2-adic valuation for the case D = D

(1)
1 and D = D

(1)
1 D

(1)
2 . Here, we have arranged it

in ascending order of the absolute value of D.
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v2(L2(ψ−D, 1)/Ω) D (i/D)4
−1/2 2i− 1 i
0 −3 −1

−1/2 −2i+ 3 −i
∞ −4i+ 1 1

−1/2 2i− 5 −i
−1/2 6i− 1 i
0 −4i+ 5 −1
∞ −7 1

−1/2 −2i+ 7 i
−1/2 −6i− 5 −i
0 8i− 3 −1
0 8i+ 5 −1
1 −4i+ 9 1

−1/2 10i− 1 i
−1/2 10i+ 3 −i
∞ −8i− 7 1
0 −11 −1
0 −4i− 11 −1

−1/2 −10i+ 7 i
−1/2 6i+ 11 −i
−1/2 2i− 13 −i
−1/2 −10i− 9 i
∞ −12i− 7 1

−1/2 14i− 1 i
−1/2 −2i+ 15 i
0 8i+ 13 −1
1 −4i− 15 1
∞ −16i+ 1 1

−1/2 −10i− 13 −i
−1/2 −14i− 9 i
0 16i+ 5 −1

−1/2 2i− 17 i
0 −12i+ 13 −1

−1/2 14i+ 11 −i
1 16i+ 9 1

−1/2 −18i− 5 −i
∞ −8i+ 17 1
0 −19 −1

−1/2 18i+ 7 i
−1/2 10i− 17 i

v2(L2(ψ−D, 1)/Ω) D (i/D)4
−1/2 −6i+ 19 −i
1 −20i+ 1 1
0 20i− 3 −1

−1/2 −14i+ 15 i
∞ −12i+ 17 1
∞ 20i− 7 1
0 −4i+ 21 −1

−1/2 10i+ 19 −i
−1/2 22i− 5 −i
0 −20i− 11 −1
∞ −23 1

−1/2 10i− 21 −i
−1/2 −14i+ 19 −i
0 20i+ 13 −1
∞ −24i+ 1 1
∞ −8i− 23 1
0 −24i+ 5 −1

−1/2 −18i− 17 i
0 −16i− 19 −1
1 −4i+ 25 1

−1/2 −22i− 13 −i
−1/2 6i− 25 i
∞ −12i− 23 1

−1/2 26i− 1 i
−1/2 −26i− 5 −i
−1/2 −22i+ 15 i
−1/2 −2i+ 27 −i
−1/2 26i− 9 i
0 −20i− 19 −1
∞ −12i+ 25 1

−1/2 −22i− 17 i
−1/2 26i+ 11 −i
0 28i+ 5 −1

−1/2 −14i− 25 i
−1/2 −10i+ 27 −i
−1/2 18i+ 23 i
0 −4i+ 29 −1

−1/2 −6i− 29 −i
1 16i+ 25 1
2 20i− 23 1

Table 3.1: 2-adic valuation for D = D
(1)
1
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v2(L2(ψ−D, 1)/Ω) D
(1)
1 D

(1)
2 (i/D)4

∞ −3 (2i− 1)2 1
0 −2i+ 3 (2i− 1)2 i
0 2i− 1 (−3)2 i
1 −4i+ 1 (2i− 1)2 −1
1/2 2i− 5 (2i− 1)2 i
0 2i− 1 (−2i+ 3)2 −i
0 6i− 1 (2i− 1)2 −i
∞ −4i+ 5 (2i− 1)2 1
1/2 −2i+ 3 (−3)2 −i
1/2 −7 (2i− 1)2 −1
∞ −4i+ 1 (−3)2 1
1/2 2i− 1 (−4i+ 1)2 i
1 −3 (−2i+ 3)2 1
0 2i− 5 (−3)2 −i
1/2 −3 (−4i+ 1)2 −1
1/2 −4i+ 1 (−2i+ 3)2 −1
∞ 6i− 1 (−3)2 i
1 −11 (2i− 1)2 1

1/2 −4i+ 5 (−3)2 −1
0 −2i+ 3 (−4i+ 1)2 −i
2 −7 (−3)2 1
∞ 2i− 1 (2i− 5)2 −i
0 2i− 5 (−2i+ 3)2 i
0 6i− 1 (−2i+ 3)2 −i
0 2i− 1 (6i− 1)2 −i
1 −4i+ 5 (−2i+ 3)2 1

3/2 −3 (2i− 5)2 1
1/2 −7 (−2i+ 3)2 −1
∞ 2i− 5 (−4i+ 1)2 −i
0 2i− 1 (−4i+ 5)2 i
1 −19 (2i− 1)2 1
∞ −11 (−3)2 −1
1/2 6i− 1 (−4i+ 1)2 i
0 −2i+ 3 (2i− 5)2 i
∞ −4i+ 5 (−4i+ 1)2 −1
0 2i− 1 (−7)2 i
1 −3 (6i− 1)2 1

1/2 −23 (2i− 1)2 −1
3/2 −7 (−4i+ 1)2 1
∞ −4i+ 1 (2i− 5)2 −1

v2(L2(ψ−D, 1)/Ω) D
(1)
1 D

(1)
2 (i/D)4

1/2 −3 (−4i+ 5)2 −1
0 −2i+ 3 (6i− 1)2 i
∞ −11 (−2i+ 3)2 1
∞ −3 (−7)2 −1
1/2 −2i+ 3 (−4i+ 5)2 −i
1 −4i+ 1 (6i− 1)2 −1
1 −31 (2i− 1)2 −1
2 −4i+ 1 (−4i+ 5)2 1
∞ −19 (−3)2 −1
0 6i− 1 (2i− 5)2 −i
0 −2i+ 3 (−7)2 −i
1 −4i+ 5 (2i− 5)2 1
1/2 −11 (−4i+ 1)2 −1
0 2i− 5 (6i− 1)2 i
5/2 −4i+ 1 (−7)2 1
1 −7 (2i− 5)2 −1
∞ −23 (−3)2 1
∞ −43 (2i− 1)2 1
∞ 2i− 5 (−4i+ 5)2 −i
1/2 −47 (2i− 1)2 −1
3/2 −4i+ 5 (6i− 1)2 1
3/2 −19 (−2i+ 3)2 1
0 6i− 1 (−4i+ 5)2 i
1 −7 (6i− 1)2 −1
1/2 2i− 5 (−7)2 −i
1/2 2i− 1 (−11)2 i
2 −31 (−3)2 1
3/2 −7 (−4i+ 5)2 1
1/2 6i− 1 (−7)2 i
2 −23 (−2i+ 3)2 −1
1/2 −4i+ 5 (−7)2 −1
3/2 −11 (2i− 5)2 1
1 −19 (−4i+ 1)2 −1
∞ −3 (−11)2 −1
∞ −3 (−11)2 −1
∞ −43 (−3)2 −1
3/2 −23 (−4i+ 1)2 1
1/2 −31 (−2i+ 3)2 −1
1 −11 (6i− 1)2 1
3 −47 (−3)2 1

Table 3.2: 2-adic valuation for D = D
(1)
1 D

(1)
2
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Chapter 4

Motivation

Which prime number p can be written as the sum of two cubes of rational numbers? This is one
of the classical Diophantine problems and there are various works (cf. [DV18], [Yin22]). This
problem is related to the existence of Q-rational points of the curve Ap : x3+ y3 = p. The curve
Ap has the structure of an elliptic curve defined over Q with the point ∞ = [1 : −1 : 0]. For
an odd prime number p, we see that Ap(Q)tors = {∞}. Therefore an odd prime number p is
written as the sum of two cubes if and only if the rank of Ap over Q is not 0. [Sat86] shows the
upper bound

rankAp(Q) ≤


0 (p ≡ 2, 5 mod 9),
1 (p ≡ 4, 7, 8 mod 9),
2 (p ≡ 1 mod 9).

In addition to the above upper bound, we explain that it is possible to determine whether the
rank of Ap(Q) is even or odd.

For an elliptic curve E defined over a number field K, let us denote the pn-Selmer group by
Selpn(E/K) and p∞-Selmer group by

Selp∞(E/K) := lim−→
n

Selpn(E/K).

The p∞-Selmer group Selp∞(E/K) is a cofinitely generated Zp-module (cf. [Gre99]) and sits in
the exact sequence

0 −→ E(K)⊗Z Qp/Zp −→ Selp∞(E/K) −→ X(E/K)[p∞] −→ 0.

Therefore if the Tate–Shafarevich group X(E/K) is finite, the rank of E(K) over Q is equal to
the corank of Selp∞(E/K) over Zp. The following theorem is called the p-parity conjecture that
is proved by Nekovář [Nek09].

Theorem 4.1 ([Nek09, Theorem 1]). Let k be a totally real number field, k0/k a finite abelian
extension and k′/k0 a Galois extension of odd degree. Let E be an elliptic curve over k; assume
that at least one of the following conditions is satisfied:

(i) E is modular (over k) and 2 ∤ [k : Q];

(ii) j(E) /∈ Ok;

then, for each prime number p 6= 2, the parity conjecture

corankZp Selp∞(E/k′) ≡ ords=1 L(E/k′, s) mod 2

holds. If k = Q, then the statement also holds for p = 2.
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Let ε(Ap/Q) be the sign of the functional equation for the Hasse–Weil L-function L(Ap/Q, s)
of Ap. By [ZK87, Table 1], the sign ε(Ap/Q) is computed as +1 if p is congruent to 1, 2, 5 modulo
9 and −1 otherwise. Hence if X(Ap/Q) is finite, we have

(−1)rankAp(Q) = ε(Ap/Q) =
{
+1 (p ≡ 1, 2, 5 mod 9),
−1 (otherwise).

from Theorem 4.1. Thus for the case where p ≡ 1 mod 9 (resp. p ≡ 4, 7, 8 mod 9), the rank of
Ap is 0 or 2 (resp. 1).

The remaining problem is essentially whether the rank of Ap is 0 or 2 for the case where p is
congruent to 1 modulo 9. In the paper [RZ95], Rodríguez-Villegas and Zagier have given three
necessary and sufficient conditions that the rank is equal to 2 under the Birch and Swinnerton–
Dyer (BSD) conjecture. One of the conditions is described in terms of a recurrence formula
although they did not give the details of the proof.

In this thesis, we give a similar formula for the elliptic curve E−p : y2 = x3+px. A 2-descent
[Sil86, Proposition 6.2] shows the upper bound

rankE−p(Q) ≤


0 (p ≡ 7, 11 mod 16),
1 (p ≡ 3, 5, 13, 15 mod 16),
2 (p ≡ 1, 9 mod 16).

For the case where p is congruent to 1, 9 modulo 16, the sign of functional equation of the Hasse–
Weil L-function of E−p over Q is +1. Similarly for the case of Ap, we see that rankE−p(Q) = 0
or 2 if we assume the Tate–Shafarevich group is finite. We obtain the following result.

Theorem 4.2 ([Nom22b, Theorem 1.1]). Let p be a prime number which is congruent to 1, 9
modulo 16. If the rank of E−p over Q is equal to 2, then p divides f3(p−1)/8(0), where the
polynomial fn(t) ∈ Z[t] is defined by the recurrence formula

fn+1(t) = −12(t+ 1)(t+ 2)f ′n(t) + (4n+ 1)(2t+ 3)fn(t)− 2n(2n− 1)(t2 + 3t+ 3)fn−1(t).

The initial condition is f0(t) = 1, f1(t) = 2t + 3. Moreover if we assume the BSD conjecture,
then the converse is also true.

This theorem tells us a criterion for determining whether the rank is 2 or not although we
may not be able to decide the rank exactly when we use a descent algorithm. In fact, using
RankBounds command of Magma [BCP97], we can see that the exact rank of E−12553(Q) is not
determined. In addition, there is an advantage that the recurrence formula in Theorem 4.2
can be implemented in the same way by everyone in the same environment without advanced
functions. As a reference, we summarize a behavior of {fn(t)}n≥1 in Table 4.3 and Table 4.4.
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Now, we return to the elliptic curve Ap : x3 + y3 = p. We tried to recover the proof of
Theorem 4.3 below. Although we could not obtain the proof of Theorem 4.3, we obtain Theorem
4.4 instead. Our recurrence formula (4.2) is simpler than (4.1). In Table 4.1 and Table 4.2, we
show the first several terms for the two recurrence formulas. The degree of the polynomial
and the number of terms of (4.2) are less than (4.1). Moreover, the time of calculating the
percentage of rank 2 up to p < 5000 on Magma [BCP97] version V2.24-5 on dual-core Intel Core
i5 processor (3.1 GHz), 8GM RAM and mac OS Catalina, the formula (4.2) is about 34 seconds
faster than (4.1). (The percentage of rank 2 is about 37% up to p < 5000.) Perhaps we may
make the recurrence formula (4.2) simpler. A procedure to obtain the recurrence formula (4.2)
is essentially the same as [RZ95].

Theorem 4.3 ([RZ95, Theorem 3]). Let p be a prime number which is congruent to 1 modulo 9,
the rank of Ap over Q is equal to 2, then p divides a(p−1)/3(0), where the polynomial an(t) ∈ Z[t]
is defined by the recurrence formula

an+1(t) = −(1− 8t3)a′n(t)− (16n+ 3)t2an(t)− 4n(2n− 1)tan−1(t). (4.1)

The initial condition is a0(t) = 1, a1(t) = −3t2. Moreover if we assume the BSD conjecture,
then the converse is also true.

Theorem 4.4 ([Nom22b, Theorem 1.3]). Let p be a prime number which is congruent to 1
modulo 9, the rank of Ap over Q is equal to 2, then p divides x(p−1)/3(0), where the polynomial
xn(t) ∈ Z[t] is defined by the recurrence formula

xn+1(t) = −2(1− 8t3)x′n(t)− 8nt2xn(t)− n(2n− 1)txn−1(t). (4.2)

The initial condition is x0(t) = 1, x1(t) = 0. Moreover if we assume the BSD conjecture, then
the converse is also true.

We now explain the proof of Theorem 4.2. For the case where p is congruent to 1, 9 modulo
16, we see that rankE−p(Q) = 2 if and only if L(E−p/Q, 1) = 0 under the BSD conjecture. The
calculation L(E−p/Q, 1) reduces to L(ψ2k−1, k) for some Hecke character ψ and some positive
integer k. More precisely, by a theory of p-adic L-functions, there exists a mod p congruence
relation between the algebraic part of L(E−p/Q, 1) and that of L(ψ2k−1, k). Therefore with the
estimate |L(E−p/Q, 1)|, it holds that L(E−p/Q, 1) = 0 if and only if p divides the algebraic part
LE,k of L(ψ2k−1, k), that is, the p-adic valuation of LE,k is positive. We write the algebraic part
of L(ψ2k−1, k) in terms of a recurrence formula by using the method of [RZ93].

Part II is organized as follows. In Chapter 5, we show the rank of E−p is equal to 2 if and
only if p divides the algebraic part of L(ψ2k−1, k). In Chapter 6, we represent the special value
L(ψ2k−1, k) as some special value of the derivative by the Maass–Shimura operator ∂k of some
modular form. In Chapter 7, we write the special value of ∂k-derivative of the modular form as
the constant term of some polynomial that is defined by a recurrence formula.
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n an(t)
0 1
1 −3t2
2 9t4 + 2t
3 −27t6 − 18t3 − 2
4 81t8 + 108t5 + 36t2
5 −243t10 − 540t7 − 360t4 + 152t
6 729t12 + 2430t9 + 2700t6 − 16440t3 − 152
7 −2187t14 + 10206t11 − 17010t8 + 1311840t5 + 24240t2
8 6561t16 + 40824t13 + 95256t10 − 99234720t7 − 2974800t4 + 6848t
9 −19683t18 − 157464t15 − 489888t12 + 7449816240t9 + 359465040t6 − 578304t3 − 6848

Table 4.1: the first 10 polynomials for an(t)

n xn(t)
0 1
1 0
2 −t
3 2
4 −33t2
5 76t
6 −339t3
7 4314t2
8 −72687t4 − 3424t
9 228168t3 + 6848

Table 4.2: the first 10 polynomials for xn(t)

p p|f3(p−1)/8(0) p p|f3(p−1)/8(0)
17 false 257 false
41 false 281 true
73 true 313 false
89 true 337 true
97 false 353 true
113 true 401 false
137 false 409 false
193 false 433 false
233 true 449 false
241 false 457 false

Table 4.3: the constant term f3(p−1)/8(0)

n fn(t)
0 1
1 2t+ 3
2 −6t2 − 18t− 9
3 12t3 + 54t2 + 108t+ 81
4 60t4 + 360t3 + 1296t2 + 2268t+ 1377
5 −1512t5 − 11340t4 − · · · − 34992t2 − 13122t+ 2187
6 21816t6 + 196344t5 + · · ·+ 1027890t2 + 433026t+ 80919

Table 4.4: the first 7 polynomials for fn(t)
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Chapter 5

Congruence relation between the
algebraic parts

Here we show that there exists a mod p congruence relation between the algebraic part of
L(E−p/Q, 1) and that of some special value of a Hecke L-function associated to the elliptic
curve E−1 : y2 = x3 + x. In the rest of part II, let $ = 3.1415 . . . denote pi.

5.1 Interpolation formula of a p-adic L-function
In this section, we state an interpolation formula of a p-adic L-function that interpolates special
values of Hecke L-functions associated to elliptic curves with complex multiplication and good
ordinary reduction at p. Such p-adic L-functions have been studied by, for example, Manin–
Vishik [VM74] and Katz [Kat76]. We refer to the de Shalit’s book [Sha87] for the contents of
this section.

Let K be an imaginary quadratic field of discriminant −dK and F/K an extension of a field.
Fix Q as an algebraic closure of Q. We write a Hecke character of F whose image belongs to Q by
χ and its conductor by f. For an integral ideal m, Lm(χ, s) denotes the Hecke L-function L(χ, s)
of χ omitting all Euler factors corresponding to the primes that divide m. It is well known that
L(χ, s) admits an analytic continuation on C if χ 6= 1 and satisfies a certain functional equation
(For example, see [Tat67], [Iwa19]). When F = K, the Hecke character χ is said to be of type
(k, j) if χ(αOK) = αkαj with α ≡ 1 mod f. Fix embeddings i∞ : Q ↪→ C and ip : Q ↪→ Cp.
Denote [−,K(fp∞)/K] by the Artin map for global class field theory associated to the modulus
fp∞. The Hecke character χ can be extended continuously to the Galois character

χ̃ : Gal(K(fp∞)/K) → C×
p , χ̃([a,K(fp∞)/K]) = χ(a)

via the embedding ip (cf. [Wei56]).

We assume p splits as pp in K and the embedding ip : Qp ↪→ Cp is compatible with p-adic
topology. Let F ′ = K(fp∞) and Fn = K(fpn) so that F ′Fn = K(fpnp∞). For an integral ideal g
of K and a Hecke character ε of type (k, j) whose conductor dividing gp∞, We write ε = ϕkϕjχ,
where ϕ is a Hecke character of conductor prime to p and type (1, 0), and χ is a finite character.
Set

S =
{
γ ∈ Gal(F ′Fn/K)

∣∣ γ|F ′ = [pn, F ′/K]
}
,

where n is the exact power of p dividing the conductor of ε.
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Definition 5.1. We define the Gauss sum for ε by

G(ε) = ϕkϕj(pn)
pn

∑
γ∈S

χ(γ)(ζγn)−1.

Remark 5.2. The Gauss sum G(ε) is independent of the decomposition ε = ϕkϕjχ.

Theorem 5.3 (cf. [Sha87, Theorem 4.12]). The following hold:

(i) Let f be any non-trivial integral ideal of K, and p a split prime (p, f) = 1. Then there
exist periods Ω ∈ C× and Ωp ∈ C×

p , and a unique p-adic integral measure µ(f) on G(f) =
Gal(K(fp∞)/K), such that for any Hecke character ε of conductor dividing fp∞ and type
(k, 0), k ≥ 1,

Ω−k
p

∫
G(f)

ε̃(σ)dµ(f;σ) = Ω−k (k − 1)!
(2$)k

G(ε)
(
1− ε(p)

p

)
· Lf(ε−1, 0).

(ii) If f | g and µ(g) is the measure induced from µ(g) on G(f), then

µ(g) =
∏

(1− [l,K(fp∞)/K]−1) · µ(f),

where the product is over all l dividing g but not f.

Remark 5.4. As stated in [Sha87, REMARKS (i), p.76], the claim (i) of Theorem 5.3 holds if
f is replaced by fg∞ with (fg, p) = 1 from the claim (ii) of Theorem 5.3.

Let ζn be the primitive pn root of unity fixed as [Sha87, p.79, CONVENTION]. Also, let
(Ω,Ωp) ∈ (C× × C×

p )/Q
× be the pair of complex period and p-adic period as in [Sha87, p.68,

DEFINITION].

Theorem 5.5 (cf. [Sha87, Theorem 4.14]). Let g be an integral ideal of K, and p a split rational
prime, (p, g) = 1. Let µ be the measure µ(gp∞) on G = Gal(K(gp∞)/K) (see Theorem 5.3 and
Remark 5.4). Then the following formula, both sides of which lie in Q, holds for any Hecke
character ε of conductor dividing gp∞, and of type (k, j), 0 ≤ −j < k:

Ωj−k
p

∫
G
ε̃(σ)dµ(σ) = Ωj−k (k − 1)!

(2$)k

(√
dK
2$

)j

G(ε)
(
1− ε(p)

p

)
· Lgp(ε−1, 0).

5.2 Congruence relation
Let E−p be the elliptic curve y2 = x3 + px defined over Q. Suppose p satisfies p ≡ 1, 9 mod 16
and splits as pp in the ring of integers OK of K = Q(i). If necessary by replacing p by p, we
may assume a generator π = a+ bi of p satisfies

a ≡ 1 mod 4, b ≡ −
(
p− 1
2

)
!a mod p.

We fix embeddings i∞ : Q ↪→ C, ip : Q ↪→ Cp so that ip is compatible with p-adic topology. Let
ΩE = Γ(1/4)2/(2$1/2) be the real period of E−1 : y2 = x3 + x. We define the algebraic part of
L(E−p/Q, 1) to be

Sp =
2p1/4L(E−p/Q, 1)

ΩE
.

The algebraic part Sp is a rational integer [BS65, Theorem 1]. The BSD conjecture predicts that
Sp is equal to the order of the Tate–Shafarevich group if rankE−p(Q) = 0 and is 0 otherwise.
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Proposition 5.6. The algebraic part Sp is 0 if and only if Sp is congruent to 0 modulo p.

Proof. For an elliptic curve E defined over Q of conductor N , [RZ95, Proposition 2] shows

|L(E/Q, 1)| < (4N)1/4
(
log

√
N

8$ + γ

)
+ c0,

where γ = 0.577 · · · is Euler’s constant and c0 = ζ(1/2)2 = 2.13263 · · · . Since p ≡ 1 mod 4, we
see that the conductor of E−p is 64p2 and obtain |Sp| < p. The claim follows from this.

The elliptic curve E−1 : y2 = x3 + x has complex multiplication by OK . Let ψ be the Hecke
character of K associated to E−1 and let χ be the quartic character such that L(E−p/Q, s) =
L(ψχ, s). These characters are explicitly given by

ψ(a) =
(−1
α

)
4
α = (−1)(a−1)/2α if (a, 4) = 1,

χ(a) =
(
α

p

)
4

if (a, p) = 1,

where α = a + bi is the primary generator of a and (·/·)4 is the quartic residue character (cf.
[Sil94, CHAPTER II, Exercice 2.34]). Let k be a positive interger. We define the algebraic part
of L(ψ2k−1, k) to be

LE,k = 2k+13k−1$k−1(k − 1)!
Ω2k−1
E

L(ψ2k−1, k).

Lemma 5.7. Let p be a prime number such that p ≡ 1, 9 mod 16 and k = (3p + 1)/4. For all
non-zero integral ideals a of OK which is prime to 4p, we have

χ(a) ≡
(
α

α

)k−1
mod p,

where α is the primary generator of a.

Proof. Since 3(N(π)− 1) = 4(k − 1), we have

αk−1 ≡
(
α3

π

)
4
mod π, αk−1 ≡

(
α3

π

)
4
mod π.

We take a ∈ p, b ∈ p so that a+ b = 1. Then by the Chinese Remainder Theorem, we have

αk−1 ≡ a

(
α3

π

)
4
+ b

(
α3

π

)
4
mod pOK , (5.1)

αk−1 ≡ a

(
α3

π

)
4
+ b

(
α3

π

)
4
mod pOK . (5.2)

Since the equation (5.1) multiplied by (α3/π)4 equals to the equation (5.2) multiplied by (α3/π)4,
it holds that (

α3

π

)
4
αk−1 ≡

(
α3

π

)
4
αk−1 mod pOK .

Therefore we obtain
αk−1

αk−1 ≡
(
α3

π

)
4

(
α3

π

)
4
=
(
α

p

)3
= χ(a) mod pOK .
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Proposition 5.8. Under the same assumptions as in Lemma 5.7, we have the following mod p
congruence relation:

πSp ≡ u24k−533k−3LE,k mod p

for some u ∈ O×
K .

Proof. It is straightforward to check

L(ψχ, 1) =
∑

(a,4p)=1
χ(a) 1

ψ(a)Nas

∣∣∣∣∣∣
s=0

,

L(ψ2k−1, k) =
∑

(a,4)=1

(
α

α

)k−1 1
ψ(a)Nas

∣∣∣∣∣∣
s=0

.

We set ε1(a) = χ(a)ψ(a), ε2(a) = (ψ(a)/ψ(a))k−1ψ(a) so that L4p(ε−1
1 , 0) = L(ψχ, 1) and

L4(ε−1
2 , 0) = L(ψ2k−1, k). Since p splits in K (or the elliptic curve E−1 is ordinary at p),

by Theorem 5.5, the following identities, both sides of which lie in Q, holds:
1
Ωp

∫
G
ε̃1(σ)dµ(σ) =

1
ΩG(ε1)L4p(ε−1

1 , 0),

1
Ω2k−1
p

∫
G
ε̃2(σ)dµ(σ) =

(k − 1)!
Ω2k−1 $k−1G(ε2)

(
1− ε2(p)

p

)2
L4(ε−1

2 , 0),

where µ is the p-adic measure on G = Gal(K(4p∞)/K). Lemma 5.7 shows∣∣∣∣∫
G
ε̃1(σ)dµ(σ)−

∫
G
ε̃2(σ)dµ(σ)

∣∣∣∣
π
≤ max

(a,4p)=1
|ε1(a)− ε2(a)|π ≤ 1

p
.

Therefore we obtain the congruence relation

Ωp

Ω G(ε1)L4p(ε−1
1 , 0) ≡

Ω2k−1
p (k − 1)!
Ω2k−1 $k−1L4(ε−1

2 , 0) mod p.

By [Sha87, p.91, Lemma] and [Lox77, p.8, (14)], G(ε1)2 is equal to √
pπ up to units in O×

K and
G(ε2) is equal to 1. Moreover, [Sha87, p.9-10] shows Ωp−1

p ≡ π−1 mod p. Hence it follows that

πSp ≡ u24k−533k−3LE,k mod p (5.3)

for some u ∈ O×
K .

Remark 5.9. It is known that (p−1
2 )!2 ≡ −1 mod p and [Lem00, Corollary 6.6] shows(p−1

2
p−1
4

)
≡ π + π mod p.

Thus (5.3) can be rewritten as

Sp ≡ ±
(
p− 1
4

)
!224k−533k−3LE,k mod p.

The proof of Proposition 5.8 essentially shows Rodríguez-Villegas’ and Zagier’s congruence re-
lation [RZ95, p.7]

SA,p ≡ (−3)(p−10)/3
(
p− 1
3

)
!2LA,k mod p,

where SA,p is the algebraic part of the special value L(Ap/Q, 1). The algebraic number LA,k is
explained in detail below.
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By Corollary 5.10, we only need to calculate the algebraic part LE,k. Actually, LE,k is the
square of a rational integer. We calculate the square root of it in Chapter 6.

Let ψ′ be the Hecke character of Q(
√
−3) associated to A1 : x3 + y3 = 1. We define the

algebraic part of L(ψ′2k−1, k) to be

LA,k = 3ν
(

2$
3
√
3Ω2

A

)k−1 (k − 1)!
ΩA

L(ψ′2k−1, k),

where ΩA = Γ(1/3)3/(2$
√
3) is the real period of A1 and ν = 2 if k ≡ 2 mod 6, ν = 1 otherwise.

For the case where p is congruent to 1 modulo 9, we see that the rank of Ap is equal to 0 if and
only if p divides LA,k in the same way for E−p.

Corollary 5.10. If the rank of E−p (resp. Ap) is equal to 2, then p divides the algebraic part
LE,k (resp. the algebraic part LA,k). Moreover, if we assume the BSD conjecture, then the
converse is true.

Proof. It follows from Coates–Wiles theorem [CW77], Proposition 5.6 and Proposition 5.8.
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Chapter 6

Square formula of L-value

6.1 Maass–Shimura operator
Unless otherwise stated, we denote by Γ ⊂ SL2(R) a congruence subgroup. Let Mk(Γ) be the
space of holomorphic modular forms of weight k for Γ. In general, M∗

k (Γ) denotes the space of
differentiable modular form, possibly with some character or multiplier system. For a function
f on H∪Q∪{∞} with values in C∪{∞} and γ =

(
a b
c d

)
∈ Γ, we define the usual slash operator

·|[γ]k by

(f |[γ]k)(z) := (cz + d)−kf(γz) = (cz + d)−kf

(
az + b

cz + d

)
.

Let D be the differential operator

D = 1
2$i

d

dz
= q

d

dq
(q = e2$iz).

By a simple calculation, we see that

(Df)
(
az + b

cz + d

)
= (cz + d)k+2(Df)(z) + k

2$ic(cz + d)k+1f(z). (6.1)

Therefore the operator D does not preserve modularity. On the other hand, the Maass–Shimura
operator

∂k = D − k

4$y (z = x+ iy)

preserves it although does not preserve holomorphy. We define ∂(h)k by ∂k+2h−2 ◦ ∂k+2h−4 ◦ · · · ◦
∂k+2 ◦ ∂k.

Proposition 6.1. The Maass–Shimura operator is compatible with the slash operator, that is,
for γ ∈ Γ, we have

∂k(f |[γ]k) = (∂kf)|[γ]k+2.

In particular, if f ∈M∗
k (Γ), then we have ∂(h)k f ∈M∗

k+2h(Γ).

Proof. It follows from the equation (6.1).

Proposition 6.2. The following holds:

∂
(h)
k =

h∑
j=0

(
h

j

)
(h+ k − 1)!
(j + k − 1)!

( −1
4$y

)h−j

Dj .
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Proof. It can be easily shown by using induction on h.

Proposition 6.3 ([RZ93, p.4, (16)]). The following holds:

∂
(h)
k

( 1
(mz + n)k

)
= (h+ k − 1)!

(k − 1)!

( −1
4$y

mz + n

mz + n

)h 1
(mz + n)k

.

Proof. By Proposition 6.2, we calculate as follows:

∂
(h)
k

( 1
(mz + n)k

)
=

h∑
j=0

(
h

j

)
(h+ k − 1)!
(j + k − 1)!

( −1
4$y

)h−j

Dj 1
(mz + n)k

=
h∑

j=0

(
h

j

)
(h+ k − 1)!
(j + k − 1)!

( −1
4$y

)h−j 1
(2$i)j

(−m)jk(k + 1) · · · (k + j − 1)
(mz + n)k+j

= (h+ k − 1)!
(k − 1)!

1
(mz + n)k

h∑
j=0

(
h

j

)( −m
2$i(mz + n)

)j( −1
4$y

)h−j

= (h+ k − 1)!
(k − 1)!

1
(mz + n)k

( −m
2$i(mz + n) +

−1
4$y

)h

= (h+ k − 1)!
(k − 1)!

( −1
4$y

mz + n

mz + n

)h 1
(mz + n)k

.

We define the h-th generalized Laguerre polynomial to be

Lα
h(z) =

∞∑
j=0

(
h+ α

h− j

)
(−z)j
j! (h ∈ Z≥0, α ∈ C).

In the special case α = 1/2, −1/2, we see that

H2n(z) = (−4)nn!L−1/2
n (z2), H2n+1(z) = 2(−4)nn!zL1/2

n (z2), (6.2)

where

Hn(z) =
∑

0≤j≤n/2

n!
j!(n− 2j)! (−1)j(2z)n−2j

is the n-th Hermite polynomial.

Proposition 6.4 ([RZ93, p.3, (9)]). The following holds:

∂
(h)
k

( ∞∑
n=0

a(n)e2$inz

)
= (−1)hh!

(4$y)h
∞∑
n=0

a(n)Lk−1
h (4$ny)e2$inz.

In particular for k = 1/2, 3/2, we have

∂
(h)
1/2

( ∞∑
n=0

a(n)e$in2z

)
= (−1)hh!

(4$y)h
∞∑
n=0

a(n)L−1/2
h (2n2$y)e$in2z,

∂
(h)
3/2

( ∞∑
n=0

a(n)e$in2z

)
= (−1)hh!

(4$y)h
∞∑
n=0

a(n)L1/2
h (2n2$y)e$in2z.
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Proof. By Proposition 6.2, we have

∂
(h)
k

( ∞∑
n=0

a(n)e2$inz

)
=

 h∑
j=0

(
h

j

)
(h+ k − 1)!
(j + k − 1)!

( −1
4$y

)h−j

Dj

 ∞∑
n=0

a(n)e2$inz

= (−1)hh!
(4$y)h

∞∑
n=0

a(n)
h∑

j=0

(h+ k − 1)!
(h− j)!(j + k − 1)!

(−4$y)j
j! Dje2$inz

= (−1)hh!
(4$y)h

∞∑
n=0

a(n)
h∑

j=0

(
h+ k − 1
h− j

)
(−4$ny)j

j! e2$inz

= (−1)hh!
(4$y)h

∞∑
n=0

a(n)Lk−1
h (4$ny)e2$inz.

For the special case k = 1/2, 3/2, it can be shown similarly.

We introduce the following theta series, whose notation is based on [FK01].

θ

[
ε
ε′

]
(z, τ) :=

∑
n∈Z

exp 2$i
{
1
2

(
n+ ε

2

)2
τ +

(
n+ ε

2

)(
z + ε′

2

)}
(ε, ε′ ∈ Q), (6.3)

θ′
[
ε
ε′

]
(0, τ) := ∂

∂z
θ

[
ε
ε′

]
(z, τ)

∣∣∣∣∣
z=0

= 2$i
∑
n∈Z

(
n+ ε

2

)
exp 2$i

{
1
2

(
n+ ε

2

)2
τ + ε′

2

(
n+ ε

2

)}
. (6.4)

The action of the Maass–Shimura operator on (6.3) and (6.4) is described by

θ(p)

[
µ
ν

]
(z) := i−p(2$y)−p/2 ∑

n∈Z+µ

Hp(n
√
2$y) exp($in2z + 2$iνn) (µ, ν ∈ Q, p ∈ Z≥0).

Proposition 6.5. For h ∈ Z≥0, it holds that

θ(2h)

[
µ
ν

]
(z) = (−1)h23h∂(h)1/2

(
θ

[
2µ
2ν

]
(0, z)

)
,

θ(2h+1)

[
µ
ν

]
(z) = −i(−1)h23h+1∂

(h)
3/2

(
1

2$iθ
′
[
2µ
2ν

]
(0, z)

)
.

Proof. It follows by Proposition 6.4 and the identities (6.2).

6.2 The L-value with Maass–Shimura operator
6.2.1 The case for E−p

Let ψ be the Hecke character of K = Q(i) associated to E−1 : y2 = x3+x. For an integral ideal
a of OK which is prime to 4, we have

ψ(a) = (−1)(a−1)/2(a+ bi),

where a + bi is the primary generator of a, that is, a + bi satisfies (a, b) ≡ (1, 0), (3, 2) mod 4.
We set ε(a+ bi) = (−1)(a−1)/2.
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Lemma 6.6. An integral ideal a of OK which is prime to 4 is written in the form

a = (r + 4N − 2mi) (r ∈ {1, 3}, N,m ∈ Z).

Proof. An ideal (a+ bi) is prime to 4 if and only if its norm a2+ b2 is prime to 4. Therefore such
an ideal (a + bi) must satisfy (a, b) ≡ (1, 0), (0, 1) mod 2. There is nothing to prove the former
case. For the latter case, it follows from (a+ bi) = (b− ai).

Let Θ(z) be the theta series

Θ(z) =
∑

λ∈OK

qNK/Qλ =
∑

n,m∈Z
qn

2+m2 ∈M1(Γ1(4)).

Proposition 6.7. We have

L(ψ2k−1, k) = (−1)k−12−3$k

(k − 1)!
(
∂
(k−1)
1 Θ(z)|z=i/4 + ∂

(k−1)
1 Θ(z)|z=i/4+1/2

)
.

Proof. We consider the Eisenstein series of weight 1 for Γ1(4)

G1,ε(z) = lim
s→0

1
2
∑′

n,m

ε(n)
(4mz + n)|4mz + n|2s

(z ∈ H),

where the prime means that summation over the terms whose denominator is not zero. By using
Proposition 6.3, we have

∂
(k−1)
1 G1,ε(z) = (k − 1)!

( −1
4$y

)k−1 1
2
∑′

n,m

ε(n)(n+ 4mz)2k−1

|n+ 4mz|2k
.

Since G1,ε(z) = $/4 ·Θ(z) (Note that dimM1(Γ1(4)) = 1), it holds that

L(ψ2k−1, k) =
∑′

r,N,m

ψ((r + 4N − 2mi))2k−1

|r + 4N − 2mi|2k

= 1
2
∑′

r,N,m

ε(r + 4N)(r + 4N − 2mi)2k−1

|r + 4N + 2mi|2k

= 1
2
∑′

n,m

ε(n)(n− 2mi)2k−1

|n+ 2mi|2k

= (−1)k−12k−3$k

(k − 1)! ∂
(k−1)
1 Θ(z)|z=i/2, (6.5)

Finally the identity [Köh11, p.192]

2Θ(z) = Θ
(
z

2

)
+Θ

(
z + 1
2

)
yields the claim.

Corollary 6.8. If k is an even integer, then L(ψ2k−1, k) = 0.

Proof. For γ =
( 0 −1
4 0

)
∈ GL+

2 (Q), we have Θ(z)|[γ]1 = −iΘ(z) (cf. [Kob93, p.124]). By
Proposition 6.1, we have

∂
(k−1)
1 Θ(z) = i(2z)−2k+1∂

(k−1)
1 Θ(z)|z=−1/4z.

Thus we obtain ∂(k−1)
1 Θ(z)|z=i/2 = 0 and the colollary follows by the equality (6.5).
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Next, we write the special value L(ψ2k−1, k) as the square of the ∂k-derivative of some
modular form. The key is Theorem 6.9 below. For z = x + iy ∈ H, we put Qz(n,m) =
|mz − n|2/2y. Note that by Proposition 6.4, it holds that

∂
(k−1)
1 Θ(z)|z=i/4 + ∂

(k−1)
1 Θ(z)|z=i/4+1/2

=2(−1)k−1(k − 1)!
$k−1

∑
(0,0),(1,1)

L0
k−1(2$Qi(n,m))e−$(n2+m2)/2,

where
∑

(a,b) implies that (n,m) runs over all pairs of integer which satisfy (n,m) ≡ (a, b) mod 2.
For simplicity, we set

an,m := L0
k−1(2$Qi(n,m))e−$(n2+m2)/2.

Theorem 6.9 ([RZ93, p.7]). For a ∈ Z>0, z ∈ H, µ, ν ∈ Q and p, α ∈ Z≥0, the following
identity holds.

(−1)pp!
($y)p

∑
n,m∈Z

e2$i(nµ+mν)
(
mz − n

ay

)α

Lα
p

(2$
a
Qz(n,m)

)
e$(inm−Qz(n,m))/a

=
√
2ay(ay)αθ(p)

[
aµ
ν

]
(a−1z)θ(p+α)

[
µ

−aν

]
(−az).

In particular for the case a = 1, α = 0, the right hand side is

(−1)p
√
2y
∣∣∣∣∣θ(p)

[
µ
ν

]
(z)
∣∣∣∣∣
2

.

We define θ2, θ4 to be

θ2(z) := θ

[
1
0

]
(0, z) =

∑
n∈Z+1/2

e$in2z, θ4(z) := θ

[
0
1

]
(0, z) =

∑
n∈Z

(−1)ne$in2z.

Theorem 6.10. Let ψ be the Hecke character of K = Q(i) associated to E−1 : y2 = x3 + x.
Then for L(ψ2k−1, s), we have

L(ψ2k−1, k) =


23k−9/2$k

(k − 1)!

∣∣∣∂(N)
1/2 θ2(z)|z=i

∣∣∣2 (k = 2N + 1),

0 (k = 2N).

Proof. We apply for p = k − 1, a = 1, α = 0, z = i in Theorem 6.9. By substituting (µ, ν) =
(1/2, 0), (0, 1/2), we see that

(k − 1)!
$k−1

 ∑
(0,0),(0,1),(1,1)

an,m −
∑
(1,0)

an,m

 =
√
2
∣∣∣∣∣θ(k−1)

[
1/2
0

]
(i)
∣∣∣∣∣
2

, (6.6)

(k − 1)!
$k−1

 ∑
(0,0),(1,0),(1,1)

an,m −
∑
(0,1)

an,m

 =
√
2
∣∣∣∣∣θ(k−1)

[
0
1/2

]
(i)
∣∣∣∣∣
2

. (6.7)

Note that ∣∣∣∣∣θ(k−1)

[
1/2
0

]
(z)
∣∣∣∣∣
2

=
∣∣∣∣∣θ(k−1)

[
0

1/2

]
(z)
∣∣∣∣∣
2

.
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By adding (6.6) and (6.7), we obtain

∂
(k−1)
1 Θ(z)|z=i/4 + ∂

(k−1)
1 Θ(z)|i/4+1/2 = (−1)k−123/2

∣∣∣∣∣θ(k−1)

[
1/2
0

]
(i)
∣∣∣∣∣
2

.

Therefore the theorem follows by Proposition 6.5.

Corollary 6.11. Under the same condition as Theorem 6.10, we have

L(ψ2k−1, k) ≥ 0.

6.2.2 The case for Ap

Let ψ′ be the Hecke character of K = Q(ω) associated to A1 : x3 + y3 = 1, where ω =
(−1 +

√
−3)/2. For an integral ideal a of OK which is prime to 3, we have

ψ′(a) = ψ′((a+ bi)) = ε′(a+ bi)(a+ bi),

where ε′ : (OK/3OK)× → C× is some sextic character.

Lemma 6.12. An integral ideal a of OK which is prime to 3 is written in the form

a = (r + 3(N +mω2)) (r ∈ {1, 2}, N,m ∈ Z),

Proof. A proof is the same as Lemma 6.6.

Let Θ′(z) be the theta series

Θ′(z) =
∑

λ∈OK

qNλ =
∑
n,m

qn
2+nm+m2 ∈M1(Γ1(3)).

Proposition 6.13. We have

L(ψ′2k−1, k) = (−1)k−12k−13−k/2−2$k

(k − 1)! ωk−1(1− ω)∂(k−1)
1 Θ′(z)|z=(ω−2)/3.

Proof. Similarly for the case E−p, we obtain

L(ψ′2k−1, k) = 1
2
∑′

n,m

ε′(n)(n+ 3mω2)2k−1

|n+ 3mω|2k

= (−1)k−12k−13k/2−2$k

(k − 1)! ∂
(k−1)
1 Θ′(z)|z=ω.

For the Atkin–Lehner involutionW3 =
(

0 −1/
√
3√

3 0

)
, we have Θ′(z)|[W3]1 = −iΘ′(z) (cf. [Köh11,

p.155]). By Proposition 6.1, we have

∂
(k−1)
1 Θ′(z) = i(

√
3z)−2k+1∂

(k−1)
1 Θ′(z)|z=−1/3z.

The proposition follows by substituting z = ω.
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By Proposition 6.4, it holds that

∂
(k−1)
1 Θ(z)|z=(ω−2)/3

=(−1)k−1√3k−1(k − 1)!
2k−1$k−1

∑
n,m∈Z

L0
k−1(2$Qω(n,m))e2$i(n2+nm+m2)(ω−2)/3.

For simplicity, we set

an,m := L0
k−1(2$Qω(n,m))e2$i(n2+nm+m2)(ω−2)/3.

Let η(z) = q1/24
∏

n≥1(1− qn) be the Dedekind eta function.

Lemma 6.14. For h,N ∈ Z≥0, the following holds:

(i) ∂(h)1/2 θ

[
1/3
−1/3

]
(0, z)

∣∣∣∣∣
z=ω

= eh$i/3−$i/431/4 ∂(h)1/2η(z)
∣∣∣
z=ω

,

(ii) ∂(h)3/2
1

2$iθ
′
[
1
1

]
(z)
∣∣∣∣∣
z=ω

= e$i/2∂
(h)
3/2η(z)

3|z=ω,

(iii) ∂(3N+1)
3/2

1
2$iθ

′
[

1/3
−1/3

]
(z)
∣∣∣∣∣
z=ω

= eN$i−13$i/362−135/4∂(3N+1)
3/2 η(3z)3|z=ω.

Proof. (i) By using identity [FK01, p.241]

θ

[
1/3
1

]
(0, z) = e$i/6η(z),

we have

θ

[
1/3
−1/3

]
(0, z) = e−7$i/36θ

[
1/3
1

]
(0, z) = e−$i/36η

(
z − 1
3

)
.

It follows from this and Proposition 6.1.
(ii) It follows from the identity [FK01, p.289, (4.14)]

θ′
[
1
1

]
(0, τ) = −2$η(τ)3. (6.8)

(iii) Proposition 6.1, we have

∂
(3N+1)
3/2 η(z)3|z=ω = 0. (6.9)

It follows from (6.8), (6.9) and the identity [FK01, p.240, (3.40)]

6e$i/3θ′
[
1/3
1

]
(0, 3z) = θ′

[
1
1

]
(0, z/3) + 3θ′

[
1
1

]
(0, 3z).
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Theorem 6.15. Let ψ′ be the Hecke character of K = Q(ω) associated to A1 : x3 + y3 = 1.
Then for L(ψ′2k−1, s), we have

L(ψ′2k−1, k) =



$k

(k − 1)!2
2k−13k/2−9/4

∣∣∣∂(3N)
1/2 η(z)|z=ω

∣∣∣2 (k = 6N + 1),

$k

(k − 1)!2
2k−33k/2−11/4

∣∣∣∂(3N+1)
3/2 η(z)3|z=ω

∣∣∣2 (k = 6N + 2),

$k

(k − 1)!2
2k−43k/2−1/4

∣∣∣∂(3N+1)
3/2 η(3z)3|z=ω

∣∣∣2 (k = 6N + 4),

0 (otherwise).

Proof. We apply for p = k − 1, a = 1, α = 0, z = ω in Theorem 6.9. By substituting (µ, ν) =
(1/2, 1/2) with multiplication by ω2, (µ, ν) = (1/6,−1/6) and (−1/6, 1/6), we see that

2k−1(k − 1)!
√
3k−1

$k−1

 ∑
n−m≡1,2,4,5

an,m +
∑

n−m≡0,3
an,m

 = ω2 4√3
∣∣∣∣∣θ(k−1)

[
1/2
1/2

]
(ω)
∣∣∣∣∣
2

, (6.10)

2k−1(k − 1)!
√
3k−1

$k−1

 ∑
n−m≡0,1,3,4

an,m +
∑

n−m≡2,5
an,m

 = 4√3
∣∣∣∣∣θ(k−1)

[
1/6
−1/6

]
(ω)
∣∣∣∣∣
2

, (6.11)

2k−1(k − 1)!
√
3k−1

$k−1

 ∑
n−m≡0,2,3,5

an,m +
∑

n−m≡1,4
an,m

 = 4√3
∣∣∣∣∣θ(k−1)

[
−1/6
1/6

]
(ω)
∣∣∣∣∣
2

, (6.12)

where
∑

n−m≡a implies that (n,m) runs over all pairs of integer which satisfy n−m ≡ a mod 6.
Note that ∣∣∣∣∣θ(p)

[
µ
−ν

]
(z)
∣∣∣∣∣
2

=
∣∣∣∣∣θ(p)

[
−ν
µ

]
(z)
∣∣∣∣∣
2

.

By adding (6.10), (6.11) and (6.12), we obtain

L(ψ′2k−1, k) = 2−k+13k/2−11/4$k

(k − 1)!

ωk+1
∣∣∣∣∣θ(k−1)

[
1/2
1/2

]
(ω)
∣∣∣∣∣
2

+ 2ωk−1
∣∣∣∣∣θ(k−1)

[
1/6
−1/6

]
(ω)
∣∣∣∣∣
2
.

Since L(ψ′2k−1, k) takes a real number, it holds that

L(ψ′2k−1, k) =



0 (k ≡ 0, 3 mod 6),
2−k+23k/2−11/4$k

(k − 1)!

∣∣∣∣∣θ(k−1)

[
1/6
1/6

]
(ω)
∣∣∣∣∣
2

(k ≡ 1, 4 mod 6),

2−k+13k/2−11/4$k

(k − 1)!

∣∣∣∣∣θ(k−1)

[
1/2
1/2

]
(ω)
∣∣∣∣∣
2

(k ≡ 2, 5 mod 6).

The theorem follows by Proposition 6.5, Lemma 6.14 and the equation

θ

[
1
1

]
(0, z) = 0.

Corollary 6.16. Under the same condition as Theorem 6.15, we have

L(ψ′2k−1, k) ≥ 0.
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Chapter 7

Recurrence formula for the algebraic
part

7.1 On the Cohen–Kuznetsov series
The differential operator D does not preserve modularity, but it does preserve holomorphy. On
the other hand, the Maass–Shimura operator ∂k preserves modularity, but does not preserve
holomorphy. We introduce an operator that preserves the properties of both modularity and
holomorphy. Let us denote the Ramanujan–Serre operator by

ϑk = D − k

12E2.

Here, E2(z) = 1 − 24
∑∞

n=1 σ1(n)qn is the Eisenstein series of weight 2. This Eisenstein series
is not a modular form, but the function E∗

2(z) = E2(z) − 3/$y is a non-holomorphic modular
form. Since the Ramanujan–Serre operator is also expressed as ϑk = ∂k − kE∗

2/12, we see that
ϑk maps a modular form of weight k to a modular form of weight k + 2. We sometimes drop
the subscript k of ϑk if it is clear the weight of a modular form on which ϑ acts.

To express the difference between the operators D, ∂k and ϑk, Rodríguez-Villegas and Zagier
have introduced the Cohen–Kuznetsov series

fD(z,X) :=
∞∑
n=0

Dnf(z)
(k)n

Xn

n! (z ∈ H, X ∈ C, f ∈Mk(Γ))

and modified Cohen–Kuznetsov series

f∂(z,X) :=
∞∑
n=0

∂
(n)
k f(z)
(k)n

Xn

n! ,

where (k)n = k(k + 1) · · · (k + n− 1) is the Pochhammer symbol.

Proposition 7.1. The following holds:

f∂(z,X) = e−X/4$yfD(z,X).

Proof. By direct computation, we have

e−X/4$yfD(z,X) =
∞∑
n=0

(
n∑

`=0

(
n

`

)
(n+ k − 1)!
(`+ k − 1)!D

`f(z)
)

Xn

(k)nn!
.

The claim follows from Proposition 6.2
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Proposition 7.2. Let f ∈Mk(Γ). For all z ∈ H, X ∈ C and γ =
(
a b
c d

)
∈ Γ, it follows that

fD

(
az + b

cz + d
,

X

(cz + d)2
)
= (cz + d)k exp

(
c

cz + d

X

2$i

)
fD(z,X), (7.1)

f∂

(
az + b

cz + d
,

X

(cz + d)2
)
= (cz + d)kf∂(z,X). (7.2)

Proof. The equation (7.2) follows from the fact that ∂(n)k f transforms like a modular form of
weight k + 2n. For the equation (7.1), by using Proposition 7.1, we have

fD

(
az + b

cz + d
,

X

(cz + d)2
)
= exp

(
X

4$y
cz + d

cz + d

)
f∂

(
az + b

cz + d
,

X

(cz + d)2
)

= (cz + d)k exp
(
X

4$y
cz + d

cz + d

)
f∂(z,X)

= (cz + d)k exp
(
X

4$y

(
cz + d

cz + d
− 1

))
fD(z,X)

= (cz + d)k exp
(

c

cz + d

X

2$i

)
fD(z,X).

A series such as the Cohen–Kuznetsov series for the Ramanujan–Serre operator is not defined
in the same way. We define

fϑ(z,X) := e−E∗
2 (z)X/12f∂(z,X). (7.3)

Then, expansion coefficients of fϑ(z,X) satisfy a certain recurrence relation.

Proposition 7.3 ([RZ95, p.12]). Let f ∈Mk(Γ). Then the series fϑ(z,X) has the expansion

fϑ(z,X) =
∞∑
n=0

Fn(z)
(k)n

Xn

n! ,

where Fn ∈Mk+2n(Γ) is the modular form that is defined by the following recurrence formula:

Fn+1 = ϑk+2nFn − n(n+ k − 1)
144 E4Fn−1. (7.4)

The initial condition is F0 = f, F1 = ϑkf .

Proof. Proposition 7.2 shows the function Fn is a modular form of weight k + 2n. By the
definition (7.3) and Proposition 7.1, we have

fϑ(z,X) = e−E2(z)X/12fD(z,X). (7.5)

Expanding the right-hand side of (7.5), we obtain

Fn(z) =
n∑

`=0

n!
`!

(
n+ k − 1
n− `

)(
−E2(z)

12

)n−`

D`f(z). (7.6)

We can see that the function (7.6) satisfies the recurrence formula (7.4) by using the equation
[Bru+08, Proposition 15]

D

(
−E2(z)

12

)
−
(
−E2(z)

12

)2
= E4(z)

144 .
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If a CM point z0 satisfies E∗
2(z0) = 0, then f∂(z0, X) = fϑ(z0, X) by (7.3). Therefore by

Proposition 7.3, we see that

∂
(n)
k f(z)|z=z0 = Fn(z0),

where Fn is the modular form that is defined by the recurrence formula (7.4).

7.2 Recurrence formula
7.2.1 The case for E−p

We apply Proposition 7.3 for f = θ2,Γ = Γ(2). The graded ring ⊕k∈ 1
2Z
Mk(Γ(2)) is isomorphic

to C[θ2, θ4] as C-algebra (cf. [Bru+08, p.28-29]). Since θ2 and θ4 is algebraically independent
over C, we sometimes regard θ2 and θ4 as indeterminates and C[θ2, θ4] as the polynomial ring
in two variables over C.

Lemma 7.4. We have

ϑθ2 =
1
12θ2θ

4
4 +

1
24θ

5
2, ϑθ4 = − 1

12θ
4
2θ4 −

1
24θ

5
4.

Proof. It follows from the fact that ϑθ42 and ϑθ44 are of weight 4 and the ring M4(Γ(2)) is
generated by θ42, θ44.

By Lemma 7.4, the Ramanujan–Serre operator ϑ acts on C[θ2, θ4] as

ϑ =
( 1
12θ2θ

4
4 +

1
24θ

5
2

)
∂

∂θ2
−
( 1
12θ

4
2θ4 +

1
24θ

5
4

)
∂

∂θ4
.

Lemma 7.5. The following holds:

θ2(i) = 2−1/4$−1/2Ω1/2
E .

Proof. The lemma holds from the identity θ2(z) = 2η(2z)2/η(z) (For example, see [Bru+08,
p.28-29]) and well-known formula:

η(i) = Γ(1/4)
2$3/4 , η(2i) = Γ(1/4)

211/8$3/4 .

Theorem 7.6. We define the algebraic part of L(ψ2k−1, k) to be

LE,k = 2k+13k−1$k−1(k − 1)!
Ω2k−1
E

L(ψ2k−1, k).

Then LE,k is the square of a rational integer and

√
LE,k =

{
|fN (0)| (k = 2N + 1),
0 (k = 2N),

where fn(t) ∈ Z[t] is the polynomial that is defined by the recurrence formula

fn+1(t) = (4n+ 1)(2t+ 3)fn(t)− 12(t+ 1)(t+ 2)f ′n(t)− 2n(2n− 1)(t2 + 3t+ 3)fn(t).

The initial condition is f0(t) = 1, f1(t) = 2t+ 3.
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Proof. By Proposition 7.3 and Lemma 7.4, we have ∂(n)1/2θ2(z)|z=i = Fn(i), where Fn is the
modular form that is defined by the recurrence formula

Fn+1 =
( 1
12θ2θ

2
4 +

1
24θ

5
2

)
∂Fn

∂θ2
−
( 1
12θ

4
2θ4 +

1
24θ

5
4

)
∂Fn

∂θ4
− n(n− 1/2)

144 E4Fn−1. (7.7)

We set fn = 24nFn/θ
4n+1
2 , which has degree 0. Then we can rewrite the recurrence formula

(7.7) as follows:

fn+1 = (4n+ 1)
θ42 + 2θ44

θ42
fn +

θ42 + 2θ44
θ42

∂fn
∂θ2

−
2θ42θ4 + θ54

θ42

∂fn
∂θ4

− 2n(2n− 1)E4
θ82
fn−1. (7.8)

Moreover we set t = (θ44 − θ42)/θ42 which satisfies t(i) = 0. Note that E4 = θ82 + θ42θ
4
4 + θ84. Then

the recurrence formula (7.8) transforms

fn+1(t) = (4n+ 1)(2t+ 3)fn(t)− 12(t+ 1)(t+ 2)f ′n(t)− 2n(2n− 1)(t2 + 3t+ 3)fn(t).

The initial condition is f0(t) = 1, f1(t) = 2t+ 3. Therefore, by Lemma 7.5, we obtain∣∣∣∂(N)
1/2 θ2(z)|z=i

∣∣∣2 = 2−4k+7/23−k+1$−2k+1Ω2k−1
E |fN (0)|2.

7.2.2 The case for Ap

First we consider the case for k = 6N+1 (The case for k = 6N+2 is almost the same). We apply
Proposition 7.3 for f = η,Γ = Γ(1). The graded ring ⊕k∈ZMk(Γ(1)) is isomorphic to C[E4, E6]
as C-algebra. Since E4 and E6 are algebraically independent over C, we sometimes regard E4
and E6 as indeterminates and C[E4, E6] as the polynomial ring in two variables over C. We
denote by ∂

∂E4
and ∂

∂E6
the derivative with respect to formal variables E4 and E6. We take a

sufficiently small neighborhood D of ω so that E1/3
6 can be defined. (Note that E6(ω) 6= 0.) In

the following, we restrict the domain of functions in C[E4, E6, E
1/3
6 , E−1

6 , η] to D.

Lemma 7.7. We have

ϑE4 = −1
3E6, ϑE6 = −1

2E
2
4 , ϑη = 0.

Proof. The proof is the same as Lemma 7.4.

By the above lemma, the Ramanujan–Serre operator ϑ acts on C[E4, E6] as

ϑ = −E6
3

∂

∂E4
−
E2

4
2

∂

∂E6
. (7.9)

The derivatives ∂
∂E4

and ∂
∂E6

on C[E4, E6] are uniquely extended on C[E4, E6, E
−1
6 , E

1/3
6 , η]

satisfying the following:

∂

∂E6
E−1

6 = −E−2
6 ,

∂

∂E6
E

1/3
6 = 1

3E
−1
6 E

1/3
6 .

Next we consider the case for k = 6N + 4. We apply Proposition 7.3 for f = η3,Γ =
Γ0(3), where η3(z) = η(3z)3. It is known that the graded ring ⊕k∈ZMk(Γ0(3)) is isomorphic to
C[C,α, β]/(α2 − Cβ) ∼= C[C,C−1, α] (cf. [Sud11]) as C-algebra, where

C = 1
2(3E2(3z)− E2(z)), α = 1

240(E4(z)− E4(3z)),
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β = 1
12

{ 1
504(E6(3z)− E6(z))− Cα

}
.

Since C and α are algebraically independent over C, we sometimes regard C and α as indetermi-
nates and C[C,α] as the polynomial ring in two variables over C. In the following, we consider
the extension C[C,C−1, α, η3] of C[C,α].

Lemma 7.8. We have

ϑC = −1
6C

2 + 18α, ϑα = 2
3Cα+ 9C−1α2.

Proof. The proof is the same as Lemma 7.4.

Similarly in the case for k = 6N + 1, by Lemma 7.8 the Ramanujan–Serre operator ϑ acts
on C[C,C−1, α, η3] as

ϑ =
(
−1
6C

2 + 18α
)
∂

∂C
+
(2
3Cα+ 9C−1α2

)
∂

∂α
.

Lemma 7.9. The following holds:

|η(ω)| =
33/8Ω1/2

A

21/2$1/2 , |η3(ω)| =
Ω3/2
A

23/231/8$3/2 , E6(ω) =
36Ω6

A

23$6 , C(ω) =
3Ω2

A

$2 .

Proof. It can be shown in the same way as Lemma 7.5.

Theorem 7.10. We define the algebraic part of L(ψ′2k−1, k) to be

LA,k = 3ν
(

2$
3
√
3Ω2

A

)k−1 (k − 1)!
ΩA

L(ψ′2k−1, k),

where ν = 2 if k ≡ 2 mod 6, ν = 1 otherwise. Then LA,k is the square of a rational integer and

√
LA,k =


|x3N (0)| (k = 6N + 1),
|y3N (0)| (k = 6N + 2),
|z3N+1(0)| (k = 6N + 4),
0 (otherwise),

where xn(t), yn(t), zn(t) ∈ Z[t] are polynomials that is defined by the following recurrece formulas

xn+1(t) = −2(1− 8t3)x′n(t)− 8nt2xn(t)− n(2n− 1)txn−1(t),
yn+1(t) = −2(1− 8t3)y′n(t)− 8nt2yn(t)− n(2n+ 1)tyn−1(t),
zn+1(t) = −(t− 1)(9t− 1)z′n(t) + {(6t− 2)n+ 2}zn(t)− 2n(2n+ 1)tzn−1(t).

The initial conditions are

x0(t) = 1, x1(t) = 0,
y0(t) = 1, y1(t) = 0,
z0(t) = 1/2, z1(t) = 1.
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Proof. Since the proof for the case k = 6N +2 is the same for k = 6N +1, we prove for the case
k = 6N + 1, 6N + 4.

First we prove for k = 6N + 1. By Proposition 7.3 and the equation (7.9), we have
∂
(n)
1/2η(z)|z=ω = Xn(ω), where Xn is the modular form that is defined by the recurrence for-

mula

Xn+1 = −E6
3
∂Xn

∂E4
−
E2

4
2
∂Xn

∂E6
− n(n− 1/2)

144 E4Xn−1. (7.10)

We set xn = 12nXn/ηE
n/3
6 and t = E4E

−2/3
6 /2 which satisfies t(ω) = 0. Then we can rewrite

the recurrence formula (7.10) as follows:

xn+1(t) = −2(1− 8t3)x′n(t)− 8nt2xn(t)− n(2n+ 1)txn−1(t).

The initial condition is x0(t) = 1, x1(t) = 0. Therefore, by Lemma 7.9, we obtain

∣∣∣∂(3N)
1/2 η(z)|z=ω

∣∣∣2 = Ω2k−1
A

$2k−1 2
−3k+23k−1/4|x3N (0)|2.

Next we prove for k = 6N + 4. We set η3(z) = η(3z)3. We have ∂(n)3/2η3(z)|z=ω = Zn(ω),
where Zn is the modular form that is defined by the recurrence formula

Zn+1 =
(
−1
6C

2 + 18α
)
∂Zn

∂C
+
(2
3Cα+ 9C−1α2

)
∂Zn

∂α
− n(n+ 1/2)

144 E4Zn−1. (7.11)

We set zn = 23n−1Zn/η3C
n, t = (1+216C−2α)/9, which satisfies t(ω) = 0. Then we can rewrite

the recurrence formula (7.11) as follows:

zn+1(t) = −(t− 1)(9t− 1)z′n(t) + {(6t− 2)n+ 2}zn(t)− 2n(2n+ 1)tzn−1(t).

The initial condition is z0(t) = 1/2, z1(t) = 1. Therefore, by Lemma 7.9, we obtain

∣∣∣∂(3N+1)
3/2 η3(z)|z=ω

∣∣∣ = Ω2k−1
A

$2k−1 2
−3k+53k−9/4|z3N+1(0)|2.
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