Computer Security Symposium 2022 in Kumamoto

同種写像暗号CSIDHの Hesse曲線による構成

小濱 大輝 (株式会社エクサ) ○野本 慶一郎 (九州大学大学院数理学府) 池松 泰彦 (九州大学マス・フォア・インダストリ研究所) 縫田 光司 (九州大学マス・フォア・インダストリ研究所, 産業技術総合研究所) 小林 真一 (九州大学大学院数理学研究院)

2. Hesse曲線の定義及び特徴付け

- 4. 鍵共有プロトコルと実験結果
- 5. 結論

■現在普及している公開鍵暗号技術は,量子コンピュータを用いた
 Shorのアルゴリズムにより多項式時間で破られてしまう.
 ■大規模な量子コンピュータの実用化に備えて,耐量子計算機暗号の

研究・開発が必要.

- 2016 NIST(米国標準技術研究所)は耐量子計算機暗号の 標準化公募を開始.
- 2020 第3ラウンド選出暗号の発表.

主な耐量子計算機暗号

- 格子暗号
- 符号ベース暗号
- 多変数多項式暗号
- ・同種写像暗号

■ 2022年7月, SIKEにおいて基盤となっている鍵共有プロトコルSIDHに 対する深刻な鍵復元攻撃^[1]が提案された.

■ その攻撃法は、同じく楕円曲線を用いる鍵共有プロトコルである CSIDHには適用不可.

CSIDH

虚二次体のorder Oに付随するイデアル類群の, ある超特異楕円曲線の \mathbb{F}_p -同型類の集合 $\mathcal{Ell}_p(O)$ への作用に基づく鍵共有方式.

[1] W. Castryck, T. Decru, An efficient key recovery attack on SIDH (preliminary version), Cryptology ePrint Archive 2022/975.

提案者	楕円曲線	定義方程式	素数p	
Castryck, et. al. ^[2] (オリジナル)	Montgomery曲線	$\mathcal{M}_A: y^2 = x^3 + Ax^2 + x$	$n = 3 \mod 8$	
Moriya, Onuki, Takagi ^[3]	Edwards曲線	$\mathcal{E}_d: x^2 + y^2 = 1 + dx^2 y^2$		
			公開鍵	

モジュラー曲線の理論を元に, CSIDHを構成できないか?

Hesse曲線を用いたCSIDHの構成に成功.

[2] W. Castryck, et. al., CSIDH: An Efficient Post-Quantum Commutative Group Action, Advances in Cryptology – ASIACRYPT 2018, pp. 395–427 (2018).
 [3] T. Moriya, H. Onuki, T. Takagi, How to Construct CSIDH on Edwards Curves, Topics in Cryptology – CT-RSA 2020, pp. 512–537 (2020).

提案者	楕円曲線	定義方程式	素数p	
Castryck, et. al. ^[2]	Montgomery曲線	$\mathcal{M}_A: y^2 = x^3 + Ax^2 + x$	$p \equiv 3 \mod 8$	
Moriya, Onuki, Takagi ^[3]	Edwards曲線	$\mathcal{E}_d: x^2 + y^2 = 1 + dx^2 y^2$		
本研究	Hesse曲線	$\mathcal{H}_d: X^3 + Y^3 + Z^3 = dXYZ$	$p \equiv 2 \mod 3$	
		使用可能	な素数は異なる	

■ Hesse曲線はEdwards曲線と違い,一般にMontgomery曲線と同型ではない.

■ したがって, Hesse曲線を用いたCSIDHは, <u>新しい楕円曲線のクラス</u>に対する 鍵共有プロトコルである.

2. Hesse曲線の定義及び特徴付け

- 4. 鍵共有プロトコルと実験結果
- 5. 結論

■ *E*(*K*): *O_Eを単位元としてアーベル群の構造が入る*.

■ 一般に, K上の楕円曲線は非特異なWeierstrass方程式

 $Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}$

で定義される曲線にK上同型である.

$$E, E': K上の楕円曲線$$

 $\phi: E \rightarrow E'$
 $(x, y) \mapsto (f_1(x, y), f_2(x, y))$: K上の**同種写像** $f_1, f_2: K$ 係数の有理関数
 $\phi(O_E) = O_{E'}$

<u>例</u>(i) $P \mapsto [n]P \coloneqq P + \dots + P$ (n倍写像)

(ii) $\pi_p: E/\mathbb{F}_p \to E/\mathbb{F}_p, (x, y) \mapsto (x^p, y^p)$ (*p*-Frobenius準同型)

■ $\operatorname{End}_p(E) \coloneqq \{\phi: E \to E \mid \mathbb{F}_p \land \mathbb{D} \ \mathbb{D} \ \mathbb{D} \ \Phi \ \mathbb{D} \ \mathbb{F}_p \land \mathbb{D} \ \mathbb{D$

超特異楕円曲線

■ E/\mathbb{F}_p : 超特異楕円曲線 ⇔ $E[p] \coloneqq \operatorname{Ker}[p] = \{O_E\}$ ■ $p \ge 5$ ならば、「 E/\mathbb{F}_p : 超特異 ⇔ # $E(\mathbb{F}_p) = p + 1$ 」

Hesse曲線の定義・性質
$$Hesse曲線$$
 $\mathcal{H}_d: X^3 + Y^3 + Z^3 = dXYZ (d^3 \neq 27)$ ただし, $0 = 0_{\mathcal{H}_d} = [0:-1:1]$

 \mathcal{H}_0 : 公開鍵

- *p* = 2 mod 3ならば,以下が成り立つ.
 - $\mathcal{H}_0/\mathbb{F}_p$: $X^3 + Y^3 + Z^3 = 0$ は超特異.

•
$$\mathcal{H}_0(\mathbb{F}_p)[\mathbf{3}] = \{O, [1:0:-1], [1:-1:0]\}.$$

<u>定理</u>

$$E/\mathbb{F}_p$$
: 楕円曲線 ($p \equiv 2 \mod 3$)とする. このとき
 $\exists P \in E(\mathbb{F}_p)[3] \setminus \{O_E\} \Rightarrow \exists d \in \mathbb{F}_p \ \exists \phi: E \simeq \mathcal{H}_d \text{ over } \mathbb{F}_p.$
特に $\phi(P) = [1:0:-1]$ と取れば, $d \in \mathbb{F}_p$ は一意的.

 $x^3 + y^3 + 1 = 0$

2. Hesse曲線の定義及び特徴付け

- 4. 鍵共有プロトコルと実験結果
- 5. 結論

Hesse曲線を用いたCSIDHのイメージ図

$$O:$$
 代数体Kのorder例 $I(O) = \{OOO可逆な分数イデアル\}$ $M = \mathbb{Q}(\sqrt{-p})$ $P(O) = \{Oでない単項イデアル\}$ $O = \mathbb{Z}[\sqrt{-p}], \mathbb{Z}[\frac{-1+\sqrt{-p}}{2}], \dots$

$$Cl(\mathcal{O}) \coloneqq I(\mathcal{O})/P(\mathcal{O})$$
 イデアル類群

- イデアル類群は有限群.
- [a] ∈ Cl(0)の代表元は整イデアルとして取れる.
- 適当な条件の下, イデアル類群は<mark>楕円曲線の集合に作用</mark>する.
- 作用により*H_d*から*H_d*,が構成できる.

どのように作用の実現をする? 具体的にd'を与えるには?

作用計算のアイデア1

■ Hesse曲線に対するイデアル類群の作用を以下で定義.

■ CSIDHでは, $\ell \mid p + 1$ を満たす奇素数 ℓ に対する, 以下のイデアルの作用を考える. $\mathfrak{l} := (\ell, \pi_p - 1), \quad \overline{\mathfrak{l}} := (\ell, \pi_p + 1)$

■ イデアル類群の作用及び, [\mathfrak{a}] $\mathcal{H}_{d} \simeq \mathcal{H}_{d'}$ となる $d' \in \mathbb{F}_{p}$ は**Veluの公式**を用いて実装.

定理 (Hesse曲線におけるVeluの公式)[4] $F = \{[s_i:t_i:1]\}_{i=1}^n \cup \{0\}$: \mathcal{H}_d の有限部分群 (3 \ #F = n + 1, $\forall i, s_i t_i \neq 0$).このとき写像 $P \mapsto \left[\prod_{R \in F} X(P+R) : \prod_{R \in F} Y(P+R) : \prod_{R \in F} Z(P+R)\right]$ はKer $\phi = F$ となる同種写像 ϕ : $\mathcal{H}_d \rightarrow \mathcal{H}_{d'}$ を定める. $d' \coloneqq \frac{(1-2n)d + \sum_{i=1}^n \frac{1}{s_i t_i}}{\prod_{i=1}^n s_i}$

[4] Broon, F. L. P., Dang, T., Fouotsa, E. and Moody, D.: Isogenies on twisted Hessian curves, Journal of Mathematical Cryptology, Vol. 15, No. 1, pp. 345–358, (2021).

2. Hesse曲線の定義及び特徴付け

- 4. 鍵共有プロトコルと実験結果
- 5. 結論

Hesse曲線を用いた鍵共有プロトコル

公開鍵	条件	秘密鍵	条件		
素数p	$p \equiv 2 \mod 3$	Alice: $(e_1, e_2, \dots, e_n) \in \mathbb{Z}^n$	各成分は区間[m,m]に属する		
$n \in \mathbb{Z}$	n > 0	Bob: $(d_1, d_2, \dots, d_n) \in \mathbb{Z}^n$	ように一様ランダムに生成		
5以上の素数 ℓ_1 ,…, ℓ_n	$\forall i, \ell_i \mid p+1$				
$m \in \mathbb{Z}$					
$\mathcal{H}_0/\mathbb{F}_p: X^3+Y^3+Z^3=0$					
		プ ロトコル			
Alice			Bob		
$\left[[\mathfrak{l}_1^{e_1}\mathfrak{l}_2^{e_2}\cdots\mathfrak{l}_n^{e_n}]\mathcal{H}_0 \xrightarrow{\simeq} \mathcal{H}_A \right]$			$[\mathfrak{l}_1^{d_1}\mathfrak{l}_2^{d_2}\cdots\mathfrak{l}_n^{d_n}]\mathcal{H}_0\stackrel{\simeq}{\to}\mathcal{H}_B$		
$A \in \mathbb{F}_p$ を送る $B \in \mathbb{F}_p$ を送る					
$\left[\mathfrak{l}_{1}^{e_{1}}\mathfrak{l}_{2}^{e_{2}}\cdots\mathfrak{l}_{n}^{e_{n}}\right]\mathcal{H}_{B}\xrightarrow{\simeq}\mathcal{H}_{A}$	· セッショ	iン鍵: S ≔ A' = B'	$[\mathfrak{l}_1^{d_1}\mathfrak{l}_2^{d_2}\cdots\mathfrak{l}_n^{d_n}]\mathcal{H}_A\xrightarrow{\simeq}\mathcal{H}_B,$		

■ 標準的なCSIDHの安全性解析に基づいて, パラメータを設定する.

p	[log ₂ p]	n	m	Aのサイズ
$12\ell_1\ell_2\cdots\ell_{73}-1$	511	73	5	512 bit

ただし、 ℓ_1, \dots, ℓ_{72} は5以上の素数を小さい順に72個並べたもの、 $\ell_{73} = 587$.

■ Aliceによる公開鍵からセッション鍵の生成を1000回行った際の実行時間の平均.

		1回目の群作用	2回目の群作用		Alice	Bob
	時間	3,931ms	3,929ms	1回目	$\mathcal{H}_0 \to \mathcal{H}_A$	$\mathcal{H}_0 \to \mathcal{H}_B$
16GBメモリ 3.20GHz Apple M1チップを用いたMagmaでの実装						
参表				2回目	$\mathcal{H}_B \to \mathcal{H}_A,$	$\mathcal{H}_A \to \mathcal{H}_{B'}$
論文 100	[1]のTabl 00回の鍵却	e 2において,オリジナ <有の実行平均は 40.8	ルなCSIDHでの ms であったと報告される	ている.		18

2. Hesse曲線の定義及び特徴付け

3. イデアル類群の作用

4. 鍵共有プロトコルと実験結果

5. 結論

- ■モジュラー曲線の理論のアイデアを用いて, Hesse曲線を用いた CSIDHを構成した.
- ■その構成では, 位数3のF_p-有理点の存在性に基づく, Hesse曲線の表示の一意性が重要である.
- ■128bit安全性に対する実装実験を行った. (素朴な実装ではオリジナルの約100倍の実行時間となった.)

Future Work

- ・モジュラー曲線の理論を用いたHesse曲線以外の楕円曲線に対するCSIDHの構成
- ・計算処理の大幅な高速化