- 1. 数列 $a_n = 1/2n \ (n \ge 1)$ に対して、以下の問いに答えよ.
 - (a) $\varepsilon = 0.1$ に対して $|a_n| < \varepsilon$ を満たす n の条件を答えよ.

(解答例)

 $|a_n| < \varepsilon$, すなわち 1/2n < 0.1 を n について解いて n > 5.

(b) $\varepsilon = 0.01$ に対して $|a_n| < \varepsilon$ を満たす n の条件を答えよ.

(解答例)

 $|a_n| < \varepsilon$, すなわち 1/2n < 0.01 を n について解いて n > 50.

(c) 実数 ε (> 0) に対して $|a_n| < \varepsilon$ を満たす n の条件を答えよ.

(解答例)

 $|a_n| < \varepsilon$, すなわち $1/2n < \varepsilon$ を n について解いて $n > 1/2\varepsilon$.

(d) $\lim_{n\to\infty} a_n = 0$ を ε -N 論法に基づいて示せ.

(解答例)

任意に $\varepsilon > 0$ を取る. このとき $N_{\varepsilon} \in \mathbb{N}$ を, $N_{\varepsilon} > 1/2\varepsilon$ を満たすように取ると, $N_{\varepsilon} < n$ ならば $|a_n - 0| < \varepsilon$ が成り立つ. 実際,

$$|a_n - 0| = \frac{1}{2n} \quad (\because a_n$$
の定義)
$$< \frac{1}{2N_{\varepsilon}} \quad (\because N_{\varepsilon} < n)$$

$$< \varepsilon \quad (\because N_{\varepsilon} > 1/2\varepsilon)$$

である. したがって $\lim_{n\to\infty} a_n = 0$ を得る.

- 2. 数列 $a_n = 1 1/n^2 \ (n \ge 1)$ に対して、以下の問いに答えよ.
 - (a) $\varepsilon = 0.1$ に対して $|a_n 1| < \varepsilon$ を満たす n の条件を答えよ.

(解答例)

 $|a_n - 1| < \varepsilon$, すなわち $1/n^2 < 0.1$ を n について解いて $n > \sqrt{10}$.

(b) $\varepsilon = 0.01$ に対して $|a_n - 1| < \varepsilon$ を満たす n の条件を答えよ.

(解答例)

 $|a_n - 1| < \varepsilon$, すなわち $1/n^2 < 0.01$ を n について解いて n > 10.

(c) 実数 ε (> 0) に対して $|a_n-1|<\varepsilon$ を満たす n の条件を答えよ.

(解答例)

 $|a_n-1|<\varepsilon$, すなわち $1/n^2<\varepsilon$ を n について解いて $n>1/\sqrt{\varepsilon}$.

(d) $\lim_{n\to\infty} a_n = 1$ を $\varepsilon - N$ 論法に基づいて示せ.

(解答例)

任意に $\varepsilon>0$ を取る. このとき $N_{\varepsilon}\in\mathbb{N}$ を, $N_{\varepsilon}>1/\sqrt{\varepsilon}$ を満たすように取ると, $N_{\varepsilon}< n$ ならば $|a_n-1|<\varepsilon$ が成り立つ. 実際.

$$|a_n - 1| = \frac{1}{n^2} \quad (\because a_n \mathcal{O}$$
定義)
 $< \frac{1}{N_{\varepsilon}^2} \quad (\because N_{\varepsilon} < n)$
 $< \varepsilon \quad (\because N_{\varepsilon} > 1/\sqrt{\varepsilon})$

である. したがって $\lim_{n\to\infty} a_n = 1$ を得る.

- 3. 漸化式 $a_{n+1}=\frac{1}{2}a_n+\frac{1}{2}, a_1=\frac{1}{2}$ で定まる数列 $\{a_n\}_{n\geq 1}$ に対して、以下の問いに答えよ.
 - (a) 数列 $\{a_n\}_{n\geq 1}$ は収束すると仮定する.このとき極限値 $\alpha=\lim_{n\to\infty}a_n$ を $\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_{n+1}$ であることを利用して求めよ.

(解答例)

与えられた漸化式において両辺の n に関する極限を考えると, $\alpha = \frac{1}{2}\alpha + \frac{1}{2}$ を得る. これを解いて $\alpha = 1$.

(b) $|a_n - 1| = \frac{1}{2}|a_{n-1} - 1|$ $(n \ge 2)$ を証明せよ.

(解答例)

漸化式の定義より

$$|a_n - 1| = \left| \frac{1}{2} a_{n-1} + \frac{1}{2} - 1 \right| = \left| \frac{1}{2} a_{n-1} - \frac{1}{2} \right| = \frac{1}{2} |a_{n-1} - 1|.$$

(c) $|a_n - 1| = \frac{1}{2^n}$ $(n \ge 1)$ を証明せよ.

(解答例)

関係式 $|a_n-1|=\frac{1}{2}|a_{n-1}-1|$ を繰り返し適用することで

$$|a_{n} - 1| = \frac{1}{2}|a_{n-1} - 1|$$

$$= \frac{1}{2^{2}}|a_{n-2} - 1| \quad (\because |a_{n-1} - 1| = \frac{1}{2}|a_{n-2} - 1|)$$

$$= \frac{1}{2^{3}}|a_{n-3} - 1| \quad (\because |a_{n} - 2| = \frac{1}{2}|a_{n-3} - 1|)$$

$$\vdots$$

$$= \frac{1}{2^{n-1}}|a_{1} - 1|$$

$$= \frac{1}{2^{n-1}} \cdot \frac{1}{2} \quad (\because a_{1} = 1/2)$$

$$= \frac{1}{2^{n}}.$$

(d) ε -N 論法に基づいて, $\lim_{n\to\infty} a_n = \alpha$ であることを証明せよ.

(解答例)

任意に $\varepsilon>0$ を取る. このとき $N_{\varepsilon}\in\mathbb{N}$ を, $N_{\varepsilon}>\log_2(1/\varepsilon)$ を満たすように取ると, $N_{\varepsilon}< n$ ならば $|a_n-1|<\varepsilon$ が成り立つ. 実際,

$$|a_n - 1| = \frac{1}{2^n}$$

$$< \frac{1}{2^{N_{\varepsilon}}} \quad (\because N_{\varepsilon} < n)$$

$$< \varepsilon \quad (\because N_{\varepsilon} > \log_2(1/\varepsilon))$$

となる. したがって $\lim_{n\to\infty} a_n = 1$ を得る.

 $4. (\mathbb{R}^2, d)$ を距離空間とする. ただし, 距離関数 d はマンハッタン距離関数

$$d: \mathbb{R}^2 \times \mathbb{R}^2 o \mathbb{R}, (\boldsymbol{x}, \boldsymbol{y}) \mapsto \sum_{i=1}^2 |x_i - y_i|$$

とする. このとき点列 $x_n = (1/n, 1+1/n^2)$ $(n \ge 1)$ の極限点は x = (0,1) であることを示せ.

(解答例)

 $\lim_{n \to \infty} d(x, x_n) = 0$ であることを示せばよい. 点 $x, x_n \in \mathbb{R}^2$ の間のマンハッタン距離は

$$d(x, x_n) = \left| 0 - \frac{1}{n} \right| + \left| 1 - \left(1 + \frac{1}{n^2} \right) \right| = \frac{1}{n} + \frac{1}{n^2}$$

である. したがって

$$\lim_{n\to\infty}d(x,x_n)=\lim_{n\to\infty}\biggl(\frac{1}{n}+\frac{1}{n^2}\biggr)=0$$

が成り立つ. 以上より示された.