- 1. 距離空間 X,Y,Z に対して以下が成り立つことを証明せよ.
 - (a) $X \simeq X$. (反射律)
 - (b) $X \simeq Y$ ならば $Y \simeq X$. (対称律)
 - (c) $X \simeq Y$ かつ $Y \simeq Z$ ならば $X \simeq Z$. (推移律)
- 2. 距離空間 $\mathbb{E}^n=(\mathbb{R}^n,d_2),(\mathbb{R}^n,d_\infty)$ が同相であることを示せ. ただし d_2 はユークリッド距離関数, d_∞ は以下で定義される \mathbb{R}^n 上の距離関数である.

$$d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) = \max_{1 \le i \le n} \{|x_i - y_i|\}, \quad (\boldsymbol{x} = (x_1, \dots, x_n), \boldsymbol{y} = (y_1, \dots, y_n))$$

 $3. \, \mathbb{R}$ 上のユークリッド距離 d_2 に対して, (\mathbb{Q}, d_2) は距離空間となる. すなわち $x,y \in \mathbb{Q}$ の間の距離を

$$d_2(x,y) = \sqrt{(x-y)^2} = |x-y|$$

と定めると、 $d_2: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ は \mathbb{Q} 上の距離空間となる。全く同様にして (\mathbb{Z}, d_2) も距離空間となるが、以下の誘導に沿って (\mathbb{Q}, d_2) と (\mathbb{Z}, d_2) が同相でないことを示せ.

(a) 任意に $x_0 \in \mathbb{Q}$ を取り固定する. このとき点列 $\{x_n\}_{n \geq 1}$ で

$$\lim_{n\to\infty} d_2(x_n,x_0) = 0$$
 かつ $\forall n\in\mathbb{N}, x_n\neq x_0$

を満たすものを一つ答えよ.

(b) $f:\mathbb{Q}\to\mathbb{Z}$ を単射とする. このとき (a) で構成した \mathbb{Q} における点列 $\{x_n\}_{n\geq 1}$ に対して

$$d_2(f(x_n), f(x_0)) \ge 1 \quad (\forall n \in \mathbb{N})$$

であることを示せ.

(c) 同相写像 $f:(\mathbb{Q},d_2)\to(\mathbb{Z},d_2)$ が存在すると仮定し矛盾を導け.