- 1. 距離空間 X,Y,Z に対して以下が成り立つことを証明せよ.
 - (a) $X \simeq X$. (反射律)

(解答例)

 $f:X\to X$ を恒等写像とする (f(x)=x). 明らかに f は全単射であり, $f^{-1}(x)=x$ である. f 及び f^{-1} は明らかに連続であるため, f は同相写像である.

(b) $X \simeq Y$ ならば $Y \simeq X$. (対称律)

(解答例)

 $f:X\to Y$ を同相写像と仮定する.このとき逆写像 $f^{-1}:Y\to X$ が存在しており,f も f^{-1} も連続写像である.これは f^{-1} が同相写像であることに他ならない $(f^{-1}$ が全単射であり, f^{-1} 及び $(f^{-1})^{-1}=f$ が連続写像).したがって $Y\simeq X$.

(c) $X \simeq Y$ かつ $Y \simeq Z$ ならば $X \simeq Z$. (推移律)

(解答例)

 $f:X \to Y, g:Y \to Z$ を同相写像と仮定する.このとき逆写像 $f^{-1}:Y \to X, g^{-1}:Z \to Y$ が存在しており、 f, f^{-1}, g, g^{-1} は全て連続写像である.

 $g\circ f:X\to Z$ が同相写像であることを示す。 $g\circ f$ の逆写像は $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ であるから, $g\circ f$ 及び $f^{-1}\circ g^{-1}$ が連続であることを示せばよいが,それは第 7 回講義スライド p.12 の命題より従う.よって $X\simeq Z$.

2. 距離空間 $\mathbb{E}^n = (\mathbb{R}^n, d_2), (\mathbb{R}^n, d_\infty)$ が同相であることを示せ. ただし d_2 はユークリッド距離関数, d_∞ は以下で定義される \mathbb{R}^n 上の距離関数である.

$$d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) = \max_{1 \le i \le n} \{|x_i - y_i|\}, \quad (\boldsymbol{x} = (x_1, \dots, x_n), \boldsymbol{y} = (y_1, \dots, y_n))$$

(解答例)

全単射写像 $f: \mathbb{R}^n \to \mathbb{R}^n$ として、恒等写像 f(x) = x を選ぶ (このとき $f^{-1}(x) = x$ である). このとき、 $f: (\mathbb{R}^n, d_2) \to (\mathbb{R}^n, d_\infty)$ 及び $f^{-1}: (\mathbb{R}^n, d_\infty) \to (\mathbb{R}^n, d_2)$ が連続写像であることを示せばよい. 同様なので $f: (\mathbb{R}^n, d_2) \to (\mathbb{R}^n, d_\infty)$ の連続性のみ示す.

f が任意の $x=x_0$ で連続であることを示す. 第7回講義スライド p.7 の命題より

$$\lim_{m o\infty}m{x}_m=m{x}_0$$
 となる (\mathbb{R}^n,d_2) の点列 $\{m{x}_m\}_{m\geq 1}$ に対して、 $\lim_{m o\infty}f(m{x}_m)=f(m{x}_0)$

を示せばよい. 特に第4回講義スライド p.17 の命題より

$$\lim_{m \to \infty} d_2(\boldsymbol{x}_m, \boldsymbol{x}_0) = 0 \Longrightarrow \lim_{m \to \infty} d_{\infty}(f(\boldsymbol{x}_m), f(\boldsymbol{x}_0)) = 0$$

を示せばよい. f が恒等写像であることと, 第9回講義スライド p.10 の補題より

$$0 \le d_{\infty}(f(x_m), f(x_0)) = d_{\infty}(x_m, x_0) \le d_2(x_m, x_0)$$

が成り立つ. したがってはさみうちの原理より、 $\lim_{m\to\infty}d_2(\boldsymbol{x}_m,\boldsymbol{x}_0)=0$ ならば $\lim_{m\to\infty}d_\infty(f(\boldsymbol{x}_m),f(\boldsymbol{x}_0))=0$.

3. \mathbb{R} 上のユークリッド距離 d_2 に対して, (\mathbb{Q}, d_2) は距離空間となる. すなわち $x, y \in \mathbb{Q}$ の間の距離を

$$d_2(x,y) = \sqrt{(x-y)^2} = |x-y|$$

と定めると, $d_2: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ は \mathbb{Q} 上の距離空間となる. 全く同様にして (\mathbb{Z}, d_2) も距離空間となるが, 以下の誘導に沿って (\mathbb{Q}, d_2) と (\mathbb{Z}, d_2) が同相でないことを示せ.

(a) 任意に $x_0 \in \mathbb{Q}$ を取り固定する. このとき点列 $\{x_n\}_{n\geq 1}$ で

$$\lim_{n\to\infty} d_2(x_n,x_0)=0$$
 かつ $\forall n\in\mathbb{N}, x_n\neq x_0$

を満たすものを一つ答えよ.

(解答例)

 \mathbb{Q} における点列 $\{x_n\}$ を

$$x_n = x_0 + \frac{1}{n} \ (n \ge 1)$$

と定めれば, $d_2(x_n, x_0) = \frac{1}{n} \to 0$ であり, $x_n \neq x_0 \ (\forall n \in \mathbb{N})$ である.

(b) $f:\mathbb{Q}\to\mathbb{Z}$ を単射とする. このとき (a) で構成した \mathbb{Q} における点列 $\{x_n\}_{n\geq 1}$ に対して

$$d_2(f(x_n), f(x_0)) \ge 1 \quad (\forall n \in \mathbb{N})$$

であることを示せ.

(解答例)

- (a) で定めた点列 $\{x_n\}_{n\geq 1}$ について, $x_n\neq x_0$ であること及び f が単射であることから, $f(x_n)\neq f(x_0)$ である。また, f の値域は $\mathbb Z$ であるから $f(x_n)$ と $f(x_0)$ は異なる二つの整数となる。したがって $d_2(f(x_n),f(x_0))=|f(x_n)-f(x_0)|$ は 1 以上の値でなければならない。
- (c) 同相写像 $f:(\mathbb{Q},d_2)\to(\mathbb{Z},d_2)$ が存在すると仮定し矛盾を導け.

(解答例)

同相写像 $f:(\mathbb{Q},d_2)\to(\mathbb{Z},d_2)$ が存在すると仮定する. 特に $f:\mathbb{Q}\to\mathbb{Z}$ は単射である. また, f は連続写像でもあるから

$$\lim_{n\to\infty}x_n=x_0$$
 となる $\mathbb Q$ の任意の点列 $\{x_n\}_{n\geq 1}$ に対して, $\lim_{n\to\infty}f(x_n)=f(x_0)$

が成り立つ. すなわち

 $\lim_{n\to\infty}d_2(x_n,x_0)=0$ となる $\mathbb Q$ の任意の点列 $\{x_n\}_{n\geq 1}$ に対して, $\lim_{n\to\infty}d_2(f(x_n),f(x_0))=0$ が成り立つ. しかし問 (a), (b) で構成したように

 $\lim_{n\to\infty} d_2(x_n,x_0) = 0 \text{ bol} \lim_{n\to\infty} d_2(f(x_n),f(x_0)) \neq 0$

となる点列 $\{x_n\}_{n\geq 1}$ が存在するので矛盾. したがって (\mathbb{Q},d_2) と (\mathbb{Z},d_2) は同相でない.